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1 Introduction

A classic empirical exercise is to study how demand responds to price. Many settings, from cell

phones to electricity to health insurance, give rise to non-linear pricing schedules. These offer both

challenges and opportunities for empirical estimation, while at the same time raising interesting

conceptual questions regarding the nature of the demand response.

We study the demand response to non-linear contracts, and its implications for the impact

of counterfactual contract design, in a particular context: the Medicare Part D prescription drug

benefit. The 2006 introduction of Medicare Part D was by far the most important benefit expansion

in Medicare’s nearly half-century of existence. In 2013, about 37 million people received Part

D coverage (Kaiser Family Foundation 2014). We analyze the response of drug expenditures to

insurance contract design using detailed micro data on insurance contracts and prescription drug

purchases from a 20% random sample of Medicare Part D beneficiaries from 2007 to 2009. Section

2 describes the data and institutional setting in more detail.

Figure 1 illustrates the highly non-linear nature of the Part D contracts; it shows the 2008

government-defined standard benefit design. In this contract, the individual initially pays for all

expenses out of pocket, until she has spent $275, at which point she pays only 25% of subsequent

drug expenditures until her total drug spending reaches $2,510. At this point the individual enters

the famed “donut hole,”or the “gap,”within which she must once again pay for all expenses out

of pocket, until total drug expenditures reach $5,726, the amount at which catastrophic coverage

sets in and the marginal out-of-pocket price of additional spending drops substantially, to about

7%. Individuals may buy plans that are actuarially equivalent to, or have more coverage than the

standard plan, so that the exact contract design varies across individuals. Nonetheless, a common

feature of these plans is the existence of substantial non-linearities that are similar to the standard

coverage we have just described. For example, in our sample a beneficiary entering the coverage

gap at the “donut hole”experiences, on average, a price increase of almost 60 cents for every dollar

of total spending.

Motivated by these contract features, we begin in Section 3 by exploiting the kink in the

individual’s budget set created by the donut hole to provide descriptive evidence on the nature

of the drug purchase response to the drug price increase at the kink. We document significant

“excess mass,”or “bunching”of annual spending levels around the kink. This is visually apparent

in even the basic distribution of annual drug spending in any given year, as shown in Figure 2 for

2008. The behavioral response appears to grow over time, which may reflect a “learning” effect

(by individuals or pharmacists) about the presence of the gap in the new program; it also tends

to be larger for healthier individuals. Using the detailed data on the timing of claims, we also

show a sharp decline in the propensity to claim toward the end of the year for those individuals

whose spending is near the kink. This decline is concentrated later in the year but is also visible at

earlier months in the year; this is consistent with individuals updating over the course of the year

about their expected end-of-year price, and having a positive discount factor. The decline in drug

purchases for individuals near the kink is somewhat more pronounced for chronic than acute drugs
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and substantially more pronounced for branded than generic drugs.

The descriptive results provide qualitative evidence of the extent and nature of the drug purchase

response to the insurance contract. To quantify this response and use it for counterfactual analysis

of behavior under other contracts requires us to develop and estimate a model of individual behavior.

Section 4 presents therefore a simple, dynamic model of an optimizing agent’s prescription drug

utilization decisions given a specific, non-linear contract design. The model illustrates the key

economic and statistical objects that determine the expenditure response to the contract. The

first key object is the distribution of health-related events, which determine the set of potential

prescription drug expenditures, and which we allow to vary across observable and unobservable

patient characteristics, including patient health. The second is the “primitive” price elasticity

that captures the individual’s willingness to trade off health and income, which we also allow to

be heterogeneous across observable and unobservable patient characteristics. The third object is

the extent to which individuals respond to the dynamic incentives associated with the non-linear

contract. We parameterize the model and estimate it using method of moments, relying on the

descriptive patterns in the data described earlier, as well as additional features of the data and

modeling assumptions. The estimated model fits the data reasonably well.

Section 5 presents the main results. We illustrate the demand response to non-linear contract

design through analysis of a specific, policy-relevant counterfactual contract: the requirement in the

2010 Affordable Care Act (ACA) that, effective in 2020, the standard (i.e. minimal) benefit plan

eliminate the donut hole, providing the same 25% consumer cost-sharing from the deductible to the

catastrophic limit (compared to the 100% consumer cost sharing in the gap in the original design).

We estimate that this ACA policy of “filling the gap”will increase total, annual drug spending

by $150 per beneficiary (or about 8%), and will increase Medicare drug spending by substantially

more (by $260 per beneficiary, or about 25%). By comparison, holding behavior constant, we

estimate the “mechanical” consequence of filling the gap would be to increase average Medicare

drug spending by only about 60% of our estimated effect.

The results also illustrate some of the subtle, distributional effects that non-linear contracts

can produce. For example, we find that somewhat counter-intuitively, filling the gap provides less

coverage on the margin to some individuals, causing them to decrease their spending. We also

show that filling the gap changes spending behavior for individuals far from the gap; we estimate

that about one-quarter of the $150 per-beneficiary increase in annual drug spending from filling the

gap comes from “anticipatory”responses by individuals whose annual spending prior to the policy

change would have been below the gap.

In the final section of the paper, we consider yet another implication of non-linear contracts:

potential incentives for cross-year substitution. We provide descriptive evidence that some, but

not all of the decline in purchasing for individuals who reach the kink reflects the postponement

of purchases to the beginning of the subsequent year. To quantitatively assess the importance

of this cross-year substitution for our main results, we provide a simple extension to the baseline

model that allows —in a highly stylized way —for individuals to engage in cross-year substitution.

The results suggest that up to two thirds of the annual spending increase from filling the gap may
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be explained by a decline in substitution of purchases to the subsequent year, rather than a net

increase in spending over a longer-than-annual horizon.

Our findings have several implications for future empirical work on “moral hazard” (that is,

spending) effects of health insurance contracts. Most of this literature has focused on characterizing

the spending effect of a health insurance contract with respect to a given single price despite the

highly non-linear nature of many observed contracts (and hence the diffi culty in defining a single

price induced by the non-linear budget set; see Aron-Dine et al. 2013). Our paper is part of a recent

flurry of attention to the non-linear nature of typical health insurance contracts (Vera-Hernandez

2003; Bajari et al. 2011; Kowalski 2012; Dalton 2014). It complements our earlier work (Aron-Dine

et al. 2014) in which we tested —and rejected —the null hypothesis that individuals do not consider

the dynamic incentives in non-linear health insurance contracts when making drug or medical

purchase decisions. Our results suggest that the distributional consequences of a change in a non-

linear health insurance contracts may be quite subtle, affecting people whose spending is outside the

range of where the actual contract change occurs. They also suggest the importance of cross-year

substitution, and therefore examining spending effects over horizons longer than one year. With

the exception of Cabral’s (2013) recent work, it has been the standard approach in the literature to

focus on the analysis of each annual contract in isolation. Our findings raise interesting questions

regarding the optimal coverage horizon in the presence of non-linear contracts, which almost always

cover a single year.1

Our paper also relates to the growing literature on the new Part D program. Most of this

literature focuses on consumers’choice of plans (e.g. Heiss et al. 2010, 2013; Abaluck and Gruber

2011; Kling et al. 2012; Ketcham et al. 2012; Polyakova 2014). However, some of it also examines

the impact of Part D on drug purchases (e.g. Yin et al. 2008; Duggan and Scott Morton 2010;

Joyce et al. 2013), including the role of non-linear contracts (Abaluck et al. 2014, Gowrisankaran

et al., 2014).

Finally, our analysis of “bunching”at the kink is related to recent studies analyzing bunching

of annual earnings in response to the non-linear budget set created by progressive income taxation

(Saez 2010; Chetty et al. 2011, 2013). This literature has emphasized that “excess mass”estimates

cannot directly translate into an underlying behavioral elasticity since they also are affected by

frictions — such as supply-side constraints on the choice of number of hours to work or limited

awareness of the budget set in the labor supply context (Chetty et al. 2011; Chetty 2012; Kleven

and Waseem 2013). These frictions are likely to be substantially less important in our setting, in

which individuals make an essentially continuous choice about drug spending (up to the lumpiness

induced by the cost of a prescription) and get “real time”feedback on the current price they face

for a drug at the point of purchase.2 On the other hand, unlike the analysis of bunching in the

static labor supply framework developed by Saez (2010), we must account for the fact that, in our

1 Indeed, Cabral (2013) documents similar cross-year substitution in the context of employer-provided dental

insurance, and exploits variation in coverage duration in her data to explore precisely this question.
2This real-time price salience may contribute to the difference between our finding of bunching and the absence

of evidence of bunching by consumers at the convex kinks in the residential electricity pricing schedule, despite the
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context, decisions are made sequentially throughout the year and information is obtained gradually

as health shocks arrive and individuals move along their non-linear budget set. In this regard, our

dynamic model is similar in spirit to the approach taken by Manoli and Weber (2011) in analyzing

the response of retirement behavior to kinks in employer pension benefits as a function of job tenure.

2 Setting and Data

Medicare provides medical insurance to the elderly and disabled. Parts A and B provide in-patient

hospital and physician coverage respectively; Part D, which was introduced in 2006, provides pre-

scription drug coverage. We have data on a 20% random sample of all Medicare Part D beneficiaries

from 2007 through 2009. We observe the cost-sharing characteristics of each beneficiary’s plan, as

well as detailed, claim-level information on any prescription drugs purchased. We also observe

basic demographic information (including age, gender, and eligibility for various programs tailored

to low income individuals). In addition, we observe each beneficiary’s Part A and B claims; we

feed these into CMS-provided software to construct a summary proxy of the individual’s predicted

annual drug spending, which we refer to as the individual’s “risk score.”3

Part D enrollees choose among different prescription drug plans offered by private insurers.

The different plans have different cost-sharing features and premiums. All plans provide annual

coverage for the calendar year, re-setting in January of each year, so that the individual is back on

the first cost-sharing arm on January 1, regardless of how much was spent in the prior year.4

Sample definitions and characteristics We make a number of sample restrictions to our initial

sample of approximately 16 million beneficiary-year observations. We limit our sample to those 65

and older who originally qualify for Medicare through the Old Age and Survivors Insurance. This

brings our sample down to about 11.6 million beneficiary-year observations. We further eliminate

individuals who are dually eligible for Medicaid or other low-income subsidies, or are in special

plans such as State Pharmaceutical Assistance Programs. Such individuals face a very different

budget set with zero, or extremely low consumer cost-sharing, so that the contract design features

that are the focus of the paper are essentially irrelevant. This further reduces our sample to about

7.4 million. Finally, we limit our attention to individuals in stand-alone prescription drug plans

(PDPs), thereby excluding individuals in Medicare Advantage or other managed care plans which

ability to make an essentially continuous choice in that context as well (Ito 2014).
3We use CMS’2012 RxHCC risk adjustment model which is designed to predict a beneficiary’s prescription drug

spending in year t as a function of their inpatient and outpatient diagnoses from year t−1 and available demographic

information. The risk scores are designed (by CMS) to be normalized to the average Part D beneficiary drug spend-

ing. For more information see http://www.cms.gov/Medicare/Health-Plans/MedicareAdvtgSpecRateStats/Risk-

Adjustors.html (last accessed November 24, 2014).
4During the open enrollment period in the fall, individuals can change their plan for the following calendar year.

Otherwise, unless a specific qualifying event occurs, individuals cannot switch plans during the year.
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bundle healthcare coverage with prescription drug coverage. This brings our sample down to about

4.4 million. Several other more minor restrictions result in a baseline sample of about 3.9 million

beneficiary-years, comprising about 1.7 million unique beneficiaries.5

Panel A of Table 1 presents some basic demographic characteristics of the original full sample

and our baseline sample. Our baseline sample has an average age of 76. It is about two-thirds

female. The average risk score in our baseline sample is 0.88, implying that our baseline sample

has, on average, 12% lower expected spending than the full Part D population.6

Prescription drug spending We use the detailed, claim-level information on prescription drug

purchases to construct data on annual spending, as well as on the timing of purchases during the

year. We also use the National Drug Codes (NDCs) to measure the types of drugs consumed, in

part relying on classifications provided by First Databank, a drug classification company.

Panel B of Table 1 presents summary statistics for annual total prescription drug spending. In

our sample, average annual drug spending is about $1,900 per beneficiary. As is typical, spending

is right skewed; median spending is less than three-quarters of the mean. Panel C reports the

distribution of annual out-of-pocket spending, which ranges from zero to several thousand dollars

annually.

Insurance contracts Insurance companies are required to offer a basic plan, which is either the

government-defined “standard benefit” or a plan with “actuarially equivalent” value, defined as

the same average share of total spending covered by the plan. Insurance companies may also offer

more comprehensive plans, referred to as “enhanced plans.”Figure 1 shows the main features of the

standard benefit plan in 2008. The total dollar amount of annual drug expenditures is summarized

on the horizontal axis: this is the sum of both insurer payments and out-of-pocket payments by

the beneficiary. The vertical axis indicates how this particular insurance contract translates total

spending into out-of-pocket spending.

The figure illustrates the existence of several cost-sharing “arms”with different out-of-pocket

prices. There is a $275 deductible, within which individuals pay for all drug expenditures out of

pocket. That is, the individual faces a price of 1: she pays a full dollar out of pocket for every

dollar spent at the pharmacy. After the individual has reached the deductible amount, the price

drops sharply to 0.25. That is, for every additional dollar spent at the pharmacy, the individual

pays 25 cents out of pocket and the insurance company pays the remaining 75 cents. This 25%

5We exclude people who have missing plan details in any month of the year in which they are enrolled or who

switch plans during the year. This excludes, among others, about 4% of the sample who die during the year. We also

eliminate the small fraction of people in plans where the kink begins at a non-standard level; we use some of these

individuals with non-standard kink levels for additional analyses in Appendix A.
6We set the average risk score to missing for 65 year olds since risk scores for new Medicare Part D enrollees

are, by necessity, a function of only a few demographics (primarily gender), so not fully comparable to risk scores of

continuing enrollees.
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co-insurance applies until the individual’s total expenditures (within the coverage period) reach

the “initial coverage limit”(ICL), which we refer to as the kink. The kink location was $2,510 in

the 2008 standard benefit plan. Once the kink is reached, the individual enters the famed “donut

hole,”or “gap,” in which she once again pays all her drug expenditures out of pocket (price of 1)

until her out-of-pocket spending reaches the “catastrophic coverage limit”(CCL). This limit, which

is defined in terms of out-of-pocket spending (in contrast to the kink amount, which is defined in

terms of total spending), was $4,050 in the 2008 standard benefit plan; this is equivalent to about

$5,700 in total expenditure (see Figure 1). Only a small fraction of the beneficiaries (about 3% in

our baseline sample) reach the catastrophic limit in a given year. Those who do face the larger

of a price of 0.05 (i.e. a 5% co-insurance), or co-pays of $2.25 for a generic or preferred drug and

$5.60 for other drugs. Empirically we estimate that this translates into a 7% co-insurance rate on

average (in our baseline sample), which is the rate used in Figure 1.7

In analyzing the main cost-sharing features of the actual plans in our sample, we make two

simplifying abstractions. First, we summarize cost-sharing in each plan-arm in terms of the percent

of the total claim amount that must be paid out of pocket by the beneficiary (co-insurance).

Although this is how cost-sharing is defined in the standard benefit design, in practice more than

three-quarters of enrollees are in plans that specify a fixed dollar amount that must be paid by the

beneficiary per claim (co-pays). We convert these co-pays to co-insurance rates for each plan-arm

in the data by calculating the average ratio of out-of-pocket spending to total spending across

all beneficiaries from our baseline sample in that plan-arm.8 Second, we assume cost-sharing is

uniform within a plan-arm, but actual plans often set cost-sharing within an arm differently by (up

to six) drug “tiers”; drug tiers are defined by each plan’s formulary and drugs are assigned to tiers

based on whether the drug is branded or generic, among other factors. Table 2 shows that these

assumptions drive a (small) wedge between the stylized description of the plans and our empirical

cost sharing calculations. For example, we estimate average cost sharing in the gap for plans with

“no gap coverage” of 0.98, and cost-sharing in the deductible arm for plans with a deductible of

0.88. In principle, both of these numbers “should be”1.

There are several thousand different plans in our sample, although the differences among them

are sometimes minimal. Table 2 summarizes some of the main distinguishing plan features. About

three-quarters of our sample chooses a plan with no deductible, and almost one-fifth of those choose

a plan with some gap coverage. Average cost-sharing below the kink is 0.34, reflecting the fact that

insurance companies often find it attractive to offer an “actuarially equivalent”plan that, relative

7The standard benefit has the same basic structure in all years, although the level of the deductible,

the kink, the catastrophic limit, and co-pays above it move around somewhat from year to year (see

http://www.q1medicare.com/PartD-The-2009-Medicare-Part-D-Outlook.php).
8Since very few individuals reach the catastrophic limit, computing plan-specific cost sharing above this limit is

diffi cult. We therefore calculate the average cost-sharing for all beneficiaries in our baseline sample in this arm across

all plans. We note that almost all spending above the catastrophic limit is covered by the government directly, and

therefore cost-sharing should be relatively uniform across plans.
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to the standard benefit design, has no deductible but charges higher co-insurance rate prior to

hitting the kink. Above the kink, the average cost sharing in the gap is 0.93. However, it varies

substantially based on whether Medicare classifies the plan as one with no or “some”gap coverage.

3 Descriptive patterns

3.1 Bunching at the kink

We examine behavior around the sharp price increase when individuals reach the kink. About 25%

of beneficiaries in our baseline sample have spending at the kink or higher in a given year. Table 2

indicates that, at the kink, the price the individual faces increases on average by about 60 cents for

every dollar spent in the pharmacy. Standard economic theory suggests that, as long as preferences

(for healthcare and income) are convex and smoothly distributed in the population, we should

observe individuals bunching at this convex kink point of their budget set; Appendix Figure A1

illustrates this intuition graphically. In practice, with real-world frictions such as the lumpiness of

drug purchases and some uncertainty about future health shocks, individuals are instead expected

to cluster in a narrow area around the kink; Saez (2010) provides a formal discussion of this in the

context of labor supply.

Figure 2 provides an empirical illustration of this theoretical response to a non-linear budget

set. It shows a histogram of total annual prescription drug spending in 2008. The response to

the kink is apparent: there appears to be a noticeable spike in the distribution of annual spending

around the kink location.

The government changes the kink location each year. Figure 3 shows that the location of the

bunching moves in virtual lock step as the location of the kink moves from $2,400 in 2007 to $2,510

in 2008, and to $2,700 in 2009. The fact that the location of the bunching moves with the location

of the kink constitutes strong evidence that the bunching represents a behavioral response to the

sharp increase in out-of-pocket price as individuals enter the gap.9

Figure 4 pools the analyses across the three years of data and reports the frequency of spending

relative to the (year-specific) kink location, which we normalize to zero. Focusing on the distribution

of spending within $2,000 of the kink, Figure 4 presents our core, summary evidence of a behavioral

response to the out-of-pocket price. It shows substantial “excess mass”of individuals around the

convex kink in the budget set.

As one way to quantify the amount of excess mass, we follow the approach taken by Chetty

et al. (2011) and approximate the counterfactual distribution of spending that would exist near

9Appendix Figure A2 further shows that for the small subsample of individuals (outside of our baseline sample)

who are in contracts where the kink begins at a non-standard level of spending, there is no excess mass around the

standard kink, but there is evidence of excess mass around the (non-standard) kink level. Interestingly, Appendix

Figure A3 shows no evidence of missing mass at the concave kink created by the price decrease when individuals hit

the deductible; in Appendix A we speculate about a potential explanation.
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the kink if there were no kink. Specifically, we fit a cubic approximation to the CDF, using only

individuals whose spending is below the kink (between $2,000 and $200 from the kink), subject to

an integration constraint. The dashed line of Figure 4 presents this counterfactual distribution of

spending. We estimate an excess mass of 29.1% (standard error = 0.3%) in the -$200 to +$200

range of the kink, relative to the area under the counterfactual distribution in that range. That is,

we estimate that the increase in price at the kink increases the number of individuals whose annual

spending is within $200 of the kink by a statistically significant 29.1%. The presence of statistically

significant excess mass around the kink allows us to reject the null of no behavioral response to

price.

The average 60 cents (per dollar spent) increase in price at the kink masks considerable het-

erogeneity across plans, reflecting differences in cost-sharing both before and in the gap. Appendix

Figure A4 plots plan-specific excess mass estimates (constructed in the same way as before) against

the size of the plan-specific price change at the kink. As we would expect, we observe the excess

mass at the kink to be increasing in the price increase at the kink.

We also explored heterogeneity in the behavioral response to price —as measured by the size of

the excess mass around the kink —across different types of individuals. Table 3 shows the results.

Column 3 shows a statistically significant excess mass in each sub-group we examine. The size of

the excess mass increases with year of the Part D program, from 9% in the first year (2006) to

29% in the last year we observe (2009). This may reflect a “learning” effect (by individuals or

pharmacists) about the presence of the gap.10 The excess mass is slightly higher for men than

for women, and tends to be larger for healthier individuals, as measured by age or the number of

hierarchical conditions the individual has.11 We defer a discussion of column 4 to Section 6 below.

3.2 Timing of purchases

The bunching in response to the kink presumably reflects individuals foregoing or postponing

prescriptions that they would otherwise have filled.12 An attractive feature of our setting is that,

unlike in the classic labor supply setting for studying bunching (Saez 2010), we observe within-year

10For the analysis by year we add in the 2006 data on the first year of the program, which we have otherwise

excluded from the sample; we limit the “by year”analysis to the approximately two-fifths of individuals who joined

in January of 2006 and who remained in the data through 2009.
11For the analysis by age we exclude 65 year olds since they join throughout the year and therefore the set of 65

year olds near the kink is likely different than at other ages. The Hierarchical Condition Categories are inputs into

the CMS risk score; they are meant to capture conditions that are predictive of higher drug spending in the next

year, such as diabetes and hypertension.
12 It is unlikely that the bunching reflects purchases that are made but not claimed (due to the reduced incentives

to claim in the gap). Most prescription drug purchases are automatically registered with Medicare directly via the

pharmacy (there is no need for the individual to separately file a claim). Moreover, given that most contracts have

some gap coverage (see Table 2) and all have catastrophic coverage if individuals spend suffi ciently far past the kink,

individuals have an incentive to report (“claim”) any drug spending in the gap.
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behavior, and thus can explore such timing channels in more detail.

Figure 5 shows the propensity to purchase at least one drug during a given month, as a function

of the total annual spending. Because much of the response is at the end of the year, we present

results (separately for each month) for the last four months of the year (September through De-

cember). As in the earlier graphical analysis of bunching (Figure 4), the horizontal axis reflects

the annual total spending of each individual, normalized relative to the year-specific kink location.

The vertical axis now presents, for each $20 bin of total annual spending, the share of individuals

with at least one prescription drug purchase during that month.

Absent a price response, one would expect that the share of individuals with a purchase in

a given month would monotonically increase with the level of annual spending (that is, with the

overall frequency of purchases) and would approach one for suffi ciently sick individuals who visit

the pharmacy every month. Indeed, for individuals whose spending is far enough from the kink,

this is the pattern that we see in Figure 5. But we also see a slowdown in the probability of end-of-

year purchases as individuals get close to the kink. The pattern is extremely sharp in December,

and (not surprisingly) less sharp for earlier months. In all months shown, the pronounced decline

in purchase frequency is concentrated around the kink; once individuals are above the kink, the

pattern reverts to the original (below the gap) monotone pattern, albeit at a lower-than-predicted

frequency, presumably reflecting the higher cost-sharing in the gap.13

Overall, the figure illustrates that individuals respond to the kink by purchasing less, and that

much of this response is concentrated late in the calendar year. This general pattern motivates

some of the modeling choices we make in the next section. In particular, the pattern is consistent

with uncertainty about future health events: if all claims were fully anticipated at the start of the

year, one would not see a larger decline in purchasing later in the year. At the same time, the fact

that there is a (albeit smaller) decline in purchasing before the end of the year is consistent with

individuals responding to dynamic incentives.14

Focusing on the last month of the calendar year, we also examined how the behavioral response

to price —as measured by the decline in end-of-year purchases around the kink —varies across types

of drugs. Table 4 reports the results. Column 5 shows the estimated percent decline in purchase

13The fitted line in the graph illustrates the difference between actual purchase probabilities and what would

be predicted in the absence of the kink. To fit the line, we run a simple regression of the logarithm of the share

of individuals with no claim (during the corresponding month) in each $20 spending bin on the mid-point of the

spending amount of the bin, weighting each bin by the number of beneficiaries in that bin. We fit this regression

using all bins between -$2,000 and -$500. This specification is designed to make the share of claims in the month

monotone in the spending bin and asymptote to one as the bin amount approaches infinity.
14An alternative explanation for the decline in purchasing in earlier months of the year (e.g. in September; see

Figure 5) is that some people have already hit the kink by September and therefore stop purchasing. However, if we

restrict the sample to people who are not around our kink window in September, we continue to see a clear decline

in purchasing patterns for those who end up around the kink by the end of the year. Therefore, at least some of the

decline in earlier months is associated with a response to dynamic incentives.

9



probability at the kink in December. The first row reports our estimates for the entire sample,

which mirrors the graphical analysis presented in the bottom right panel of Figure 5. On average,

individuals who reach the gap reduce their probability of a December drug purchase by just over

8%. This reduction appears to be about two percentage point larger for chronic or “maintenance”

drugs relative to acute and “non maintenance”drugs; this may reflect greater flexibility regarding

the timing of drug purchases for chronic conditions.15 The probability of a branded drug purchase

in December declines much more sharply at the kink than the probability of a generic drug purchase

(20% compared to 8.5%).16 The bottom row of Table 4 shows a greater (12%) decline in purchasing

of “inappropriate”drugs compared to the average 8% decline in drug purchasing, providing some

evidence that higher prices may lead to a somewhat more careful selection of drugs.17 We defer a

discussion of the right-most column until Section 6 below.

4 Model and estimation

The results in the previous section provided descriptive evidence of a behavioral response of drug

purchases to the sharp increase in price as individuals enter the donut hole. The timing of the

response points to the importance of dynamic incentives. In order to make counterfactual, quanti-

tative inferences about what behavior would look like under alternative contracts, we develop and

estimate a simple, dynamic model of an optimizing agent’s prescription drug utilization decisions

given a specific, non-linear contract design. The model focuses on several elements of individual

choice behavior motivated by the preceding descriptive results and the highly non-linear nature of

Medicare Part D prescription drug coverage.

4.1 A model of prescription drug use

We consider a risk-neutral, forward looking individual who faces stochastic health shocks within the

coverage period.18 These health shocks can be treated by filling a prescription. The individual is

15Following the spirit of Alpert (2012), we classify a drug as chronic if, empirically, conditional on consuming

the drug, the median beneficiary consumes the drug more than two times within the year. We classify a drug as

“maintenance” vs. “non maintenance” using the classification from First Databank, a drug classification company.

This classification is roughly analogous to being a drug for a chronic condition or not.
16The size of the kink is roughly similar in our sample for branded and generic drugs; we estimate a price increase

of 60 cents and 55 cents respectively. However, because branded drugs tend to be much more expensive (on average,

in our sample, the price of a branded drug is about $130 compared to about $20 for generics), the per-prescription

(rather than per-dollar) price effect of entering the gap is significantly greater for branded drugs.
17Following Zhang et al. (2010), we proxy for inappropriate drug using an indicator from the Healthcare Effec-

tiveness Data and Information Set (HEDIS) on whether the drug is considered high-risk for the elderly (HEDIS

2010).
18Risk neutrality simplifies the intuition and estimation of the model. In the robustness section we describe and

estimate a specification that uses a recursive utility model and allows for risk aversion. We find this has little effect
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covered by a non-linear prescription drug insurance contract j over a coverage period of T weeks.19

In our setting, as in virtually all health insurance contracts, the coverage period is annual (so that,

typically, T = 52). Contract j is given by a function cj(θ, x), which specifies the out-of-pocket

amount c the individual would be charged for a prescription drug that costs θ dollars, given total

(insurer plus out-of-pocket) spending of x dollars up until that point in the coverage period.

The individual’s utility is linear and additive in health and residual income. Health events are

given by a pair (θ, ω), where θ > 0 denotes the dollar cost of the prescription and ω > 0 denotes the

(monetized) health consequences of not filling the prescription. We assume that individuals make a

binary choice whether to fill the prescription, and a prescription that is not filled has a cumulative,

additively separable effect on health. Thus, conditional on a health event (θ, ω), the individual’s

flow utility is given by

u(θ, ω;x) =

{
−cj(θ, x) if prescription filled

−ω if prescription not filled
. (1)

When health events arrive they are drawn independently from a distribution G(θ, ω). It is also

convenient to define G(θ, ω) ≡ G2(ω|θ)G1(θ).

Health events arrive with a weekly probability λ′, which is drawn from H(λ′|λ) where λ is the

weekly arrival probability from the previous week. We allow for serial correlation in health by

assuming that λ′ follows a Markov process, and that H(λ′|λ) is (weakly) monotone in λ in a first

order stochastic dominance sense.

The only choice individuals make is whether to fill each prescription. Optimal behavior can be

characterized by a simple finite horizon dynamic problem. The three state variables are the number

of weeks left until the end of the coverage period, which we denote by t, the total amount spent so

far, denoted by x, and the health state, summarized by λ, which denotes the arrival probability in

the previous week.20

The value function v(x, t, λ) represents the present discounted value of expected utility along

the optimal path and is given by the solution to the following Bellman equation:

v(x, t, λ) =

∫ [
(1− λ′)δv(x, t− 1, λ′) + λ′

∫
max

{
−cj(θ, x) + δv(x+ θ, t− 1, λ′),

−ω + δv(x, t− 1, λ′)

}
dG(θ, ω)

]
dH(λ′|λ).

(2)

Optimal behavior is straightforward to characterize: if a prescription arrives, the individual fills it

if the value from doing so, −cj(θ, x)+ δv(x+θ, t−1, λ′), exceeds the value obtained from not filling

the prescription, −ω+δv(x, t−1, λ′). In our baseline model we assume that terminal conditions are

given by v(x, 0, λ) = 0 for all x; in Section 6 we extend the model to allow for cross-year substitution

by making the terminal values a function of unfilled prescriptions.

on our main counterfactual estimates.
19Aggregating to the weekly level reduces the computational cost of estimating the model. This seems a reasonable

approximation given that many prescriptions may arrive as a “bundle”that needs to be consumed together.
20The Markov process for λ creates the typical initial condition problem. Throughout, we assume that in the first

week of the coverage period, the health state is drawn from the steady-state distribution of λ.
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To summarize, the model boils down to a statistical description that describes the individual’s

health — the arrival rate of prescriptions λ′, its transition over time H(λ′|λ), and the associated

(marginal) distribution of cost G1(θ) —and two important economic objects. The first economic

object, summarized by G2(ω|θ), can be thought of as the “primitive”price elasticity that captures
substitution between health and income. The presence of a non-zero price elasticity was suggested

by the descriptive evidence of bunching at the kink. Specifically, G2(ω|θ) represents the distribution
of the (monetized) utility loss ω from not filling a prescription of total cost θ. Of interest is the

distribution of ω relative to θ, or simply the distribution of the ratio ω/θ. As ω/θ is higher (lower),

the utility loss of not filling a prescription is greater (smaller) relative to the cost of filling the

prescription, so (conditional on the cost) the prescription is more (less) likely to be filled. In

particular, when ω ≥ θ the individual will consume the prescription even if she has to pay the

full cost out of pocket. However, once ω < θ the individual will consume the prescription only if

some portion of the cost is (effectively) paid by the insurance. Thus, G2(ω|θ) can be thought of as
capturing the price elasticity that would completely determine behavior in a constant price (linear)

contract.

The second economic object in the model, summarized by the parameter δ ∈ [0, 1], captures the

extent to which individuals understand and respond to the dynamic incentives associated with the

non-linear contract. At one extreme, a “fully myopic”individual (δ = 0) will not fill a prescription of

cost θ if the negative health consequence of not filling the prescription, ω, is less than the immediate

out-of-pocket expenditure required to fill the prescription, −cj(θ, x). However, individuals with

δ > 0 take into account the dynamic incentives and will therefore make their decision based not

only on the immediate out-of-pocket cost of filling the prescription, but also on the expected arrival

of future health shocks and the associated sequence of prices associated with the non-linear contract.

A greater value of δ increases the importance of subsequent out-of-pocket prices relative to the

immediate out-of-pocket price for the current utilization decision.21 Since price is non-monotone

in total spending (for example, rising at the kink and then falling again at the catastrophic limit,

as seen in Figure 1), whether an individual with δ > 0 is more or less likely to fill a current

prescription, relative to an individual with δ = 0, will depend on their spending to date and their

expectation regarding future health shocks. In other work (Aron-Dine et al. 2014), we presented

evidence that individuals do not respond only to the current, “spot”price of medical care in making

utilization decisions (i.e. we reject δ = 0) both in the Medicare Part D context and in the context

of employer-provided health insurance. Likewise, the claim timing patterns (Figure 5) showing a

drop in the probability of monthly claiming by people in the kink, which is much more pronounced

toward the end of the year, is also consistent with within-year uncertainty about the distribution

of health-related events (as captured by λ and G1(θ)) and a positive discount factor (captured by

δ > 0).

21 In practice, δ is affected not only by the “pure” discount rate, but also by the extent to which individuals

understand and are aware of the budget set created by the non-linear contract, and by liquidity constraints. We thus

think of δ as a parameter specific to our context.
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4.2 Parameterization

To estimate the model, we need to make three types of assumptions. One is about the parametric

nature of the distributions that enter the individual’s decisions, G1(θ) and G2(ω|θ). We assume
that G1(θ) is a lognormal distribution with parameters µ and σ2; that is,

log θ ∼ N(µ, σ2). (3)

We also assume that ω is equal to θ with probability 1−p, and is drawn from a uniform distribution
over [0, θ] with probability p. That is, G2(ω|θ) is given by

ω|θ ∼
{
U [0, θ] with probability p

θ with probability 1− p
. (4)

Recall that if ω ≥ θ it is always optimal for the individual to consume the prescription, so the

assumption of a mass point at θ (rather than a smooth distribution with support over values greater

than θ) is inconsequential. With probability 1 − p the individual will consume the prescription
regardless of the cost sharing features of the contract. A larger value of p implies that a larger

fraction of shocks have ω < θ and are therefore ones where drug purchasing may be responsive to

the cost-sharing features of the contract.

With this parameterization, the extent of substitution between health and income is increasing

in p, the probability that ω is lower than θ. To give a concrete interpretation, consider a person

who faces a constant coinsurance rate of c ∈ [0, 1]. That person will fill prescriptions whenever

ω ≥ cθ. This occurs with probability 1− pc. A low value of p means that the person will fill most
prescriptions regardless of the coinsurance rate. A high value of p indicates that the probability of

filling prescriptions is more responsive to the coinsurance rate c.

The second assumption is the nature of the Markov process for the weekly probability of health

event λ. We assume that, for each individual, λ can take one of two values, λL and λH (with

λL ≤ λH), and that Pr(λt = λL|λt+1 = λL) = κL ≥ 0.5 and Pr(λt = λH |λt+1 = λH) = κH ≥ 0.5,

so there is (weakly) positive serial correlation. This simple parameterization of the Markov process

for λ is computationally attractive, as we only need to consider two possible values for the third

state variable.

The third type of assumption is about parameterization of heterogeneity across individuals in

a given year. Since individuals’health is likely serially correlated, even conditional on the serial

correlation introduced above, we introduce permanent unobserved heterogeneity in the form of

discrete types, m ∈ {1, 2, ...,M}. An individual i is of type m with (logit) probability

πm =
exp(z′iβm)∑M
k=1 exp(z′iβk)

, (5)

where zi is a vector of individual characteristics —our primary specification uses a constant, the

risk score, and a 65 year-old indicator —and {βm}Mm=1 are type-specific vectors of coeffi cients (with

one of the elements in each vector normalized to zero). The parameters µm, σm, and pm are all

allowed to flexibly vary across types. The discount factor δ, which is more diffi cult to identify

13



in the data, is assumed to be the same for all types. For λ, we allow λLm to vary flexibly by

type, but then impose the restriction that κL, κH , and the ratio λL/λH ≤ 1 is the same for all

types. Our parameterization allows for heterogeneity in both individual health (λ, µ, σ), and in the

responsiveness of individual spending to cost-sharing (p). Overall, the model has 4M parameters

that define the M quadruplets (µm, σm, λ
L
m, pm), the single parameter δ, three parameters for κL,

κH , and the ratio λL/λH , and 3 (M − 1) parameters that define the βm’s that shift the type

probabilities. In our primary specification we use 5 types (M = 5), and thus have 36 parameters

to estimate.

Our choice of parameterization imposes a number of limitations that deserve further discussion.

First, our assumption that ω has a mass point at θ is completely innocuous. This is because our

model implies that any individual (even one with no insurance) will fill every prescription when

ω > θ. This means that we can never identify G2(ω|θ) above ω = θ, but also that the distribution of

ω above θ does not affect the model’s predictions, and therefore has no effect on our counterfactual

exercises. Second, our assumption that the ratio ω/θ is independent of θ implies that substitutability

between health and income does not depend on the cost of a given prescription. Taken literally,

this is not realistic: more expensive prescriptions are more likely associated with vital drugs with

few close substitutes. We partially capture the idea that some drugs may be less substitutable by

allowing both the distribution of θ and the distribution of ω/θ to depend on type. We also report in

the robustness section below an alternative specification that allows the distribution of ω to depend

on θ. Third, although we allow for heterogeneity across individuals in the distribution of health

events and in their behavioral response to the contract (as shown in Table 3), we do not directly

model the choice of drug (e.g. brand vs. generic, or type of molecule), and relatedly abstract from

heterogeneity across drugs in the behavioral response to the contract (as shown in Table 4). To the

extent that drug type varies across people, this may be partially and indirectly captured by allowing

for heterogeneity in response rates and the distribution of health events across individuals, and we

explore related parametric assumptions in the robustness section. This simplification, however,

allows us to think about drug expenditure in monetary terms, and to have a unified model for all

spending decision. A more detailed model of health conditions and potential cures would make it

very diffi cult to uniformly treat all possible drugs, and would make it less consistent to uniformly

treat all plans in a similar way by converting co-pay plans to co-insurance plans (as mentioned in

Section 2).

4.3 Identification

Loosely speaking, identification relies on three important features of our model and data. First,

the non-linearity of Part D coverage generates variation in incentives that we use to recover the

distribution of ω|θ, or the primitive substitution between health and income that would govern
behavior in a linear contract. In particular, the bunching at the kink (shown in Section 3) allows

us to identify the spending response to price where the spot and future price are the same (as

in a linear contract). Second, timing of purchases (also shown in Section 3) helps in identifying
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the discount factor δ. The larger δ is, the more current purchases would respond to expected

total spending, and hence the greater the decline we would see in earlier months in Figure 5.22

Finally, observing weekly claims made by the same individual over the entire year, along with our

assumption that the (unobserved) type is constant throughout the year and health status follows

a Markov process, allows us to recover the distribution of health status for each type from the

observed selected distribution of filled prescriptions.

More formally, we will consider identification conditional on plan characteristics and other

covariates. To streamline the notation and discussion, we will leave the conditioning on covariates

and plan characteristics implicit for the remainder of this section. We want to show that the

observed distribution of prescription drug claims can uniquely identify the distribution of types,

πm, the distribution of health status given type, Hm(λt|λt+1) and G1(θ|m), the substitutability

between income and health, G2(ω|θ,m), and the parameter δ. The results of Hu and Shum (2012)

show the nonparametric identification of the distribution of types, πm, the conditional (on type)

distribution of θ, G1(θ|m), conditional claim probabilities, P (claim|m, θ, x, t), and distribution of
λ, Hm(λt|λt+1). Given the distribution of health status and conditional claim probabilities, the

non-linearity of the contract generates variation in incentives that traces out the distribution of ω.

To see this, note that an immediate consequence of equation (2) is that

P (claim|m, θ, x, t, λ) = P (−cj(θ, x) + δv(x+ θ, t− 1, λ) ≥ −ω + δv(x, t− 1, λ)|m, θ, x, t, λ) (6)

= P

(
ω/θ ≥ 1

θ
(cj(θ, x) + δv(x, t− 1, λ)− δv(x+ θ, t− 1, λ)) |m, θ, x, t, λ

)
= 1−G2

(
1

θ
(cj(θ, x) + δv(x, t− 1)− δv(x+ θ, t− 1)) |m, θ

)
where G2 (·|m, θ) is the conditional CDF of the ratio ω/θ. With linear insurance coverage, cj(θ, x) =

cθ, the value function does not depend on x, and equation (6) simplifies to

P (claim|m, θ, x, t, λ) = 1−G2 (c|m, θ) . (7)

In this case, without exogenous variation in insurance contracts, we would only be able to identify

G2 (·) at a single point. Fortunately, our data features nonlinear contracts, so we can identify
G2 (·|m, θ) on a much larger range.

To eliminate the value function, consider the final week of the year. Then,

P (claim|m, θ, x, 1, λ) = 1−G2

(
cj(θ, x)

θ
|m, θ

)
, (8)

22To assess the importance of these moments for the actual identification, we follow the procedure recently proposed

by Gentzkow and Shapiro (2014). We find that the estimation moments (described below) that are associated with

the timing of drug purchases at the end of the year account for approximately 20% of the contribution of all the

moments to the estimation of δ. Analogously, we find that the estimation moments (again described below) that

are associated with the bunching around the kink account for approximately 48-72% of the contribution of all the

moments to the estimation of the different p’s.
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so we can identify G2 (·|m, θ) on the support of cj(θ, x)/θ. The range of this support is an empirical

question. Beyond the catastrophic limit, our contracts are linear with a coinsurance rate of around

7%. Below the deductible or in the coverage gap, the ratio cj(θ, x)/θ is as high as one. Thus, we can

identify G2 (·|m, θ) on approximately [0.07, 1]. This is only approximate because there is variation

in the coinsurance rates across plans, and we are showing identification conditional on plan.

Given G2 (·|m, θ), variation in claim probabilities with x and t allows us to identify δ from

equation (6). If δ is near zero, then t will have little effect on the claim probabilities, given x. The

larger is δ, the more important t will be.

4.4 Estimation

We estimate the model using simulated minimum distance on a slightly modified "baseline"sample.23

Let mn denote a vector of sample statistics of the observed data. Let ms(ϕ) denote a vector of the

same sample statistics of data simulated using our model with parameters ϕ. Our estimator is

ϕ̂ ∈ arg min
ϕ∈Ψ

(mn −ms(ϕ))′Wn(mn −ms(ϕ)), (9)

whereWn is an estimate of the inverse of the asymptotic variance of the sample statistics. Appendix

B describes in detail how we solve for the value function and simulate our model.

We use several “types”of moment conditions, with our choices motivated by some of the key

descriptive patterns in Section 3. One type of moments summarizes the distribution of annual

spending that is shown in Figure 2, with particular emphasis on the bunching pattern around the

kink. Specifically, we use the probability of zero spending; the average of censored (at $15,000)

spending; the standard deviation of censored spending; the probability of annual spending being

less than $100, $250, $500, $1000, $1500, $2000, $3000, $4000, and $6000; and the covariance of

annual spending with each of the covariates. To capture the bunching around the kink, we use

the histogram of total spending around the kink location, using twenty bins (each of width of $50)

within $500 of the kink. That is, we divide the range of -$500 to $500 (relative to the kink location)

into twenty equally sized bins and use the frequency of each bin as a moment we try to match.

A second type of moments focuses on the claim timing pattern around the kink, as shown in

Figure 5. Specifically, we construct twelve such timing moments. For each month from July to

December, we use two moments: the share of individuals with at least one claim in the month

conditional on the individuals’total spending in the year being within $150 of the kink, and an

analogous share conditional on the individuals’total spending being between $800 and $500 below

the kink. Finally, a third type of moments captures the persistence of individual spending over

time, for which we use the covariance between spending in the first half and second half of the year.

It may be useful to highlight some computational challenges that we faced in our attempt to

obtain estimates. Naive simulation of the model causes ms(ϕ) to be discontinuous due to the

23To reduce computational cost, we make two inconsequential restrictions to our baseline sample. We restrict to the

500 most common plans; this represents about 10% of plans but about 90% of beneficiary-years. From this modified

baseline sample we use a 10% random sample.
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discrete claim decisions in our model. Due to the long sequence of discrete choices, conventional

approaches for restoring continuity to ms(ϕ) fail. Each period an individual can fill a prescription

or not, so there are 2T possible sequences of claims. We cannot introduce logit errors to smooth over

each period separately because the claims affect the state variable of total spending; calculating all

2T possible sequences of claims and smoothing them is infeasible. While using importance sampling

is possible in theory, in practice it is diffi cult to choose an initial sampling distribution that is close

to the true distribution, resulting in inaccurate simulations. Instead, we use the naive simulation

method to compute ms(ϕ) and utilize a minimization algorithm that is robust to discontinuity.

Specifically, we use the covariance matrix adaptation evolution strategy (CMA-ES) of Hansen

and Kern (2004) and Hansen (2006). Like simulated annealing and various genetic algorithms,

CMA-ES incorporates randomization, which makes it effective for global minimization. Like quasi-

Newton methods, CMA-ES also builds a second order approximation to the objective function,

which makes CMA-ES much more effi cient than purely random or pattern-based minimization al-

gorithms. In comparisons of optimization algorithms, CMA-ES is among the most effective existing

algorithms, especially for non-convex non-smooth objective functions (Hansen et al. 2010; Rios and

Sahinidis 2013).

Our estimator has the typical asymptotic normal distribution for simulated GMM estimators.

Although ms(ϕ) is not smooth for fixed n or number of simulations, it is smooth in the limit as

n→∞ or S →∞. As a result,
√
n (ϕ̂− ϕ0)

d→ N
(
0, (MWM)−1MW (1 + 1/S)ΩWM(MWM)−1

)
, (10)

whereW = p limWn,M = ∇p limms(ϕ0), Ω is the asymptotic variance of mn, and S is the number

of simulations per observation used to calculate ms.

5 Results

5.1 Parameter estimates and model fit

Table 5 presents the parameter estimates. We find δ to be relatively close to one, at 0.96. Recall

that our preferred interpretation of δ is not a (weekly) discount factor, which we would expect to be

even closer to one, but simply a behavioral parameter that also reflects individuals’understanding

of the insurance coverage contract, in particular the salience to them of the (future) non-linearities

of the contract.

The rest of the parameters are allowed to vary by type, and our baseline specification allows

for five discrete types. The types are ordered in terms of their expected annual spending (bottom

rows of Table 5). The second, third, and fifth types are the most common and together account

for about 93% of the individuals. As should be expected, increases in risk score are associated

with increased probability of the highest spending types (types 4 and 5) and decreased probability

of lower spending types (types 2 and 3). It is interesting to note that these (predictable) average

correlations between risk score (and age) and spending type are not estimated to be monotone
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across types. For example, individuals with higher risk scores are more likely to be of types 4 and 5

and less likely to be of types 2 and 3, but their probability of being the lowest spending type (type

1) —which only accounts for about 5% of the beneficiaries —is not affected much. This pattern may

point to multi-dimensional heterogeneity, and to important (unobserved) individual traits that are

associated with low drug expenditure for reasons that are less related to health.

The parameter estimates suggest quite modest positive serial correlation in health on a week-

to-week basis. The event probability in the “sicker”state (λH) is estimated to be only 13% higher

than the event probability in the “healthier”state (λL) and the probability of each state does not

change much with the health state in the earlier week. These results suggest that conditional on

allowing for unobserved heterogeneity across individuals in their (“permanent”) health state for the

year, the remaining week-to-week correlation is not very important.24

A type’s health is characterized by the rates of arrival of prescription drug events (the λ’s)

and the distribution of their size (θ). The first type is fairly healthy, with relatively low event

probabilities and small claim amounts when there is a (potential) claim (i.e. low E(θ)). It is

interesting to observe that the two highest spending types (types 4 and 5) exhibit different patterns.

While type 4 has a very high event probabilities (0.78 and 0.88), the expected cost of a (potential)

claim conditional on an event is relatively low (82 dollars). In contrast, type 5 is half as likely to

experience a health event, but once he has one, the expected cost of the potential claim is more

than doubled. Heuristically, one could think of type 4 as an individual with chronic conditions,

while type 5 has fewer chronic problems, but is generally sicker and experiences frequent acute

diseases.

Annual spending depends not only on health but also on the propensity to purchase (i.e. to fill

a prescription in response to a health event). This purchase propensity depends on the parameter

p, which likewise determines how responsive drug purchasing may potentially be to the cost-sharing

features of the contract. As it turns out, the estimated parameter is highly correlated with how sick

individuals are. The heathiest types (types 1 and 2), who have the lowest expected spending, are

also the types that have the highest estimates of p (0.86 and 0.9), and are thus the most responsive

to the coverage features. In contrast, the sickest type (type 5) has the lowest estimate of p (0.37)

and in two out of three drug events, he would fill the drug regardless of the coverage.

Overall, the model fits the data quite well. To assess the goodness of fit, we generated the

model predictions by simulating optimal spending as a function of the estimated parameters and

the observable characteristics for each beneficiary-year of our baseline sample. Figure 6 presents

the distribution of spending, for both the observed and the predicted data; we show both the

24 Indeed, the raw data is generally consistent with this finding. To see this, we look at the raw correlation between

an individual’s spending in one week and the week before; we also performed the same exercise at the monthly level.

When we do not account for heterogeneity, this correlation is low (0.02) at the weekly level but high (0.50) at the

monthly level, presumably reflecting the lumpiness of (often 30-day) prescriptions. However, if we first subtract

individual fixed effects, and then compute the correlation for the within-individual residual, we actually obtain small

and negative serial correlation at both the weekly and monthly level (-0.15 and -0.10, respectively).
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fit of the overall spending distribution and the “zoomed in” fit within $1,000 of the kink. The

patterns are extremely similar. Figure 7 shows the observed and predicted patterns of monthly

claim probabilities, separately for individuals who are below and around the kink. The model

predicts well the sharp drop in claim probabilities toward the end of the year for individuals who

end up around the kink (dark lines) and the lack of such a drop for individuals who end up below

the kink (grey lines); however, the overall fit is not as striking as in Figure 6, presumably reflecting

the fact that monthly claim probabilities are much more noisy than annual spending measures.

Figures 6 and 7 relate to the moments we explicitly try to fit. Appendix Figures A5-A7 present

the fit of our model in three out-of-sample cases: for another 10% random sample from the estimation

sample, for a set of small plans excluded from the estimation sample,25 and for the 2010 calendar

year, which is not part of the original data, which was limited to 2007-2009. The out-of-sample

predictions are reassuring and fit quite well. For the case of 2010, however, while the model does

predict the right direction out-of-sample by which spending changes relative to the baseline sample,

the fit is not as good as the other cases. This may not be surprising: simple macroeconomic time

trends in, say, drug prices may generate differences between the model prediction and the data,

and our predictions are not designed to capture such trends.

5.2 Spending response to counterfactual contract designs

The primary objective of the paper is to explore how counterfactual contract designs affect prescrip-

tion drug spending. We are interested in both mean spending effects (which are arguably the most

policy-relevant) and also heterogeneity in the spending effects. In particular, we wish to examine

how changes in non-linear contracts affect individuals at different points in the expected spending

distribution.

The model and its estimated parameters allow us to accomplish precisely this. To do so, we

generate model predictions in precisely the same way that we assessed goodness of fit in Figures 6

and 7, except that we now also simulate spending under counterfactual (in addition to observed)

contracts, again as a function of the estimated parameters and the observable variables in our

sample. When we do this, we use the same set of simulation draws to generate individual-specific

predictions, so simulation noise is essentially differenced out.

We focus on a policy-relevant counterfactual. As part of the 2010 Affordable Care Act (ACA),

there will no longer be a gap in the government-defined standard benefit contract by 2020: the

pre-gap coinsurance rate (of 25%) will instead be maintained from the deductible amount un-

til catastrophic coverage (of about 7% coinsurance rate) kicks in at the current out-of-pocket

catastrophic limit. We refer to this policy colloquially by the short-hand of “filling the gap.”

Filling the gap in the 2008 standard benefit design We begin by examining the spending

implications of counterfactual changes to the 2008 standard contract shown in Figure 1. This

25Recall (see footnote 23) that to reduce computation time for model estimation, we limit the baseline sample to

the 500 most common plans and then use only a 10% random subsample.

19



focus on a single contract is useful for illustrating particular aspects of the spending response to

alternative contract designs.

Row 1 of Table 6 shows spending under the 2008 standard contract, and row 2 shows the results

of filling the gap. On average, total spending increases by $204, or about 12%, from $1,760 to

$1,964. This increase in total spending reflects the combined effect of a $154 decline in average

out-of-pocket spending and about $358 increase in insurer spending (rightmost columns). By way

of comparison, we estimate that if utilization behavior were held constant, filling the gap would

decrease out-of-pocket spending on average by about $200 (and naturally increase average insurer

spending by the same amount).

The spending effects of filling the gap are quite heterogeneous. For example, comparing rows 1

and 2 of Table 6, we see that the median increase in total spending is only about $40, while the 90th

percentile change is about $820. The top panel of Figure 8 provides a look at which individuals are

affected by the change. The figure plots the distribution of the change in spending from filling the

gap as a function of the individual’s predicted spending under the 2008 standard contract. It shows,

not surprisingly, that the biggest change in spending from filling the gap is for individuals whose

predicted spending under the standard contract would be in the gap. However, it also highlights

two somewhat subtle implications of non-linear contracts.

First, recall that due to dynamic considerations, there is the possibility of an “anticipatory”

positive spending effect from filling the gap for people who do not eventually hit the gap. Consistent

with this “anticipatory effect,”we see an increase in spending for people whose predicted spending

under the standard contract is quite far below the gap. This highlights the potential importance of

considering the entire non-linear budget set in analyzing the response of health care use to health

insurance contract. Quantitatively, we estimate that the “anticipatory”effect accounts for about

25% of the average $204 increase in annual drug spending.26

A second, somewhat counter-intuitive finding in the top panel of Figure 8 is that filling the gap

causes some previously high spending individuals to actually decrease their spending. Because the

catastrophic limit is held constant with respect to out-of-pocket rather than total spending when

the gap is “filled,”it takes a greater amount of total spending to hit the catastrophic limit. Thus,

holding behavior constant, some high-spending individuals who under the old standard contract had

out-of-pocket spending that put them in the catastrophic coverage range where the marginal price

is only 7 cents on the dollar would, under the “filled gap” contract, have out-of-pocket spending

that leaves them still within the (“filled”) gap, where the marginal price would be 25 cents on

the dollar. This illustrates a more general point that, with non-linear contracts, a given change in

contract design can provide more coverage (less cost sharing) on the margin to some individuals

but less coverage to others.

The bottom panel of Figure 8 illustrates how the filled gap affects the change in spending

through the lens of calendar time. The figure plots average weekly spending for individuals under

26The increase in spending among people more than $200 below the kink location under the standard plan is $74

on average, and this portion of the annual spending distribution accounts for 70% of the people.
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the 2008 standard benefit design (gray line) and under the filled gap contract (black line). Under the

filled gap contract —which provides more coverage and a lower expected end-of-year price than the

standard contract —spending is higher in every week throughout the year. The fact that spending

is higher even at the very beginning of the year —when no one has hit the gap yet —reflects the

positive δ we have estimated. However, as the end of the year gets closer, and the realization of

health events reduces residual uncertainty, a share of the individuals see their expected end-of-year

price rise sharply under the standard contract (but not under the “filled gap” contract), leading

to greater divergence between predicted spending under the standard contract and the filled gap

contract. Under the standard benefit contract, many individuals slow down their spending quite

a lot over the last few months of the year (and especially in the last few weeks), while under the

“filled gap”contract this effect does not exist and average weekly spending does not decline toward

the end of the year.

Filling the gap in the observed contracts Thus far we have considered the spending effect

of changes to only the 2008 standard contract. However, in practice, as seen in Table 2, many

people have coverage that exceeds the standard contract, including some gap coverage. In rows 3

and 4 of Table 6, therefore, we examine the impact of filling the gap in the observed distribution

of contracts in our data.27

Given the observed distribution of plans in the data, we estimate that filling the gap will raise

total annual drug spending by $148 per beneficiary, or about 8%, from $1,768 to $1,916. Aggregating

across affected beneficiaries, this suggests that filling the gap will raise total prescription drug

spending by about $1.9 billion per year.28 About one quarter of this increase comes from increases in

spending by individuals who are predicted to spend $200 below the kink location or less under their

original plan, suggesting a quantitatively important role for “anticipatory”behavior.29 Medicare

spending increases substantially more than total spending, by about $253 per beneficiary (right

most column); by contrast, ignoring the behavioral response to the contract, we calculate that

“filling the gap”would increase average Medicare spending by only $150.30

27We assume that firms do not respond by making other changes to contracts, and that the distribution of bene-

ficiaries across contracts remains fixed; specifying and estimating the demand and supply of contracts is beyond the

scope of the paper, although in the robustness analysis below we do explore sensitivity to one relatively crude way of

accounting for beneficiary selection of contracts.
28As described in Section 2, our 3 year, 20 percent sample of Medicare beneficiaries includes 7.4 million beneficiary-

years who would be affected by the requirement to “fill the gap” (we exclude individuals who are dual eligibles or

have low income subsidies for whom the gap is already “filled”). This implies about 12.3 million beneficiaries per year

affected by the “filled gap”counterfactual, or —multiplied by $150 per beneficiary increase in annual drug spending

—about a $1.8 billion increase in annual prescription drug spending.
29We estimate the increase in spending among people more than $200 below the kink location is $57 on average,

and this portion of the annual spending distribution accounts for 71% of the people.
30We estimate the increase in insurer spending and assume this higher spending is completely passed through to

Medicare in the form of higher Medicare reimbursement of insurers. See Duggan et al. (2008) for more information
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Reducing cost-sharing on all arms Naturally we can use the model and its results to predict

counterfactual spending under other counterfactual contract designs as well. To try to move beyond

policy-specific counterfactuals to a more general economic object that could potentially be applied

to other budget sets or compared to other estimates, we also calculate the implied elasticity of drug

spending for a given percent reduction in cost-sharing on every arm of the 2008 standard benefit

budget set. Appendix Table A1 shows the results. Perhaps not surprisingly, the elasticity decreases

(in absolute value) as the price change is greater; at some point the probability of claiming in

response to a shock becomes suffi ciently high that further price reductions have a smaller effect.31

The implied elasticity of drug spending with respect to the price ranges from about -0.5 (for a 1%

reduction in cost-sharing throughout the budget set) to -0.3 (for 7.5% and higher reductions in

cost-sharing throughout the budget set).

5.3 Robustness

In our model and parameterization, we have made many assumptions. In this section we briefly

assess the sensitivity of our main findings to some of these assumptions. Table 7 summarizes the

results. For each robustness check, it reports the implied effect on “filling the gap”on total and

insurer spending. Overall, the results appear reasonably stable across specifications. Specifically,

across the specifications (discussed below), the estimated increase in total annual drug expenditures

from filling the gap ranges from 6% to 11%, which is qualitatively similar to our baseline estimate

(of 8.4%). Similarly, the estimated increase in insurer expenditure ranges between 22% and 29%,

while our baseline estimate was 26%. Results from other counterfactual exercises discussed above

also appear quite stable (not reported in the table).

The first row of Table 7 reports the estimates from the baseline specification. Rows 2 and

3 assess the sensitivity of the results to changing the number of discrete types. In our baseline

specification we assumed, somewhat arbitrarily, that heterogeneity is captured by a mixture of five

discrete types (M = 5). In row 2 we estimate the model using three types (M = 3), and in row

3 we use six types (M = 6). Since the share of two of the five types in our baseline specification

was relatively small (3% and 5%; see Table 5), it may not be surprising that adding a sixth type or

eliminating two types have relatively small affect on the results. Indeed, the six-type specification

gives rise to results that are quite similar to the baseline ones, and the share of the sixth type is

close to zero, suggesting that adding additional types (beyond six) —an exercise that we have not

done and is computationally intensive due to the increase in the number of parameters — is also

unlikely to affect much the results.

Row 4 and 5 of Table 7 assess the sensitivity of the results to the choice of covariates zi. In

our baseline specification we use the beneficiary’s risk score and an indicator for whether he is

on how Medicare reimburses insurers.
31We report elasticity estimates in Table A1 by computing the ratio of the percent change in spending to the percent

change in price. When price changes are large, this calculation is not the same, of course, as a “pure”elasticity which

is defined locally (i.e. for a marginal change in price).
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65 years old as the two covariates (see Table 5). In row 4 we use only a constant and no other

covariates, while in row 5 we add an indicator that is equal to one if the beneficiary selected a plan

that provides no gap coverage (in addition to the included covariates of risk score and a 65 year

old indicator). The latter specification is a rough attempt to capture potential plan selection on

unobservables, capturing, for example, that unobservably healthier beneficiaries may be more likely

to select plans with no gap coverage.

While modeling plan selection is outside the scope of our current exercise, one potential concern

with using our baseline model to assess the counterfactual effects of changes in contract design is that

it does not allow for any effect that such contract changes may have on inducing some beneficiaries

to select different plans. A related concern is the possibility that the effect of a contract change like

“filling the gap” is heterogeneous across individuals and that the selection of plans is correlated

with this heterogeneity, so that the size of the treatment varies across individuals with different

treatment effects (e.g. individuals with a larger “treatment effect”due to higher p select plans that

offer gap coverage and therefore experience less of a “treatment”from the counterfactual of “filling

the gap”). The fact that our estimates do not change much once we include a “no gap”indicator

as a covariate suggest that plan selection is unlikely to have a first-order effect on our primary

estimates of interest.

In rows 6 and 7 of Table 7 we examine the sensitivity of our results to our modeling assumption

of individuals as risk neutral. While the assumption of risk neutrality appears odd in the context of

insurance, risk neutrality may not be a bad approximation for week-to-week decision making, even

when the utility function over annual quantities (of income and/or health) is concave. To assess this

conjecture, we extend the model of Section 4 and specify a utility model that allows for a concave

utility function. More details are provided in Appendix C.1. To summarize, we introduce risk

aversion while maintaining perfect intertemporal substitution by specifying recursive preferences as

in Kreps and Porteus (1978) or Epstein and Zin (1989). As in our baseline model, an individual’s

flow utility is linear and additive in health and residual income. Since we do not observe residual

income, we assume constant absolute risk aversion so that residual income does not affect claiming

decisions. Thus, individual preferences over a stochastic sequence of flow utilities, {ut}, are defined
recursively as

Vt = ut + δ

(
−1

α

)
logEt[e

−αVt+1 ] (11)

where α is the coeffi cient of absolute risk aversion.32 The limit, as α approaches zero, is equivalent

to our baseline specification. For the results reported in Table 7 we set the values of α to span the

range of (absolute) risk aversion estimates that are obtained in a similar health-related context by

Handel (2013). The main results remain qualitatively similar.

Finally, in row 8 of Table 7 we explore the robustness of our results to the distributional

assumption of ω. Our baseline specification assumes that moral hazard is captured by a (type-

specific) parameter pm: ω is assumed to be drawn from a uniform distribution over [0, θ] with

probability pm, and ω is greater than θ (and therefore inconsequential) with probability 1 − pm.
32These preferences are equivalent to V0 = E0

[
−e−α

∑T
t=0 δ

tut
]
.
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One concern about this assumption is that it assumes that prescriptions that are more expensive

to fill have similar price responsiveness as prescriptions that are cheaper. One could imagine that

expensive prescriptions are more likely to be associated with more serious conditions, which in turn

are associated with less consumer discretion and lower moral hazard. Another possibility is that ω

increases less than proportionally in the cost of filling a prescription, and moral hazard is therefore

more prevalent for higher values of θ. To explore the sensitivity of the results to this possibility,

we enrich the parameterization by allowing pm to depend on θ. That is, we still assume that ω

is a mixture of a draw from a uniform distribution over [0, θ] or that it is greater than θ, but the

probability for the former is now a function of θ, pm(θ). Our specific parameterization is

pm(θ) =
exp(ρθ)

1
pm
− 1 + exp(ρθ)

, (12)

where pm is a type-specific moral hazard parameter, as in the baseline specification, and ρ is a

new parameter that we estimate (identical across types) that allows for a correlation between ω

and θ. This specification nests our baseline model (when ρ = 0), but could also allow for positive

correlation between pm and θ (when ρ > 0) or negative correlation (when ρ < 0).

The results from this specification gives rise to an estimate of ρ = 0.000073, which implies a

small positive relationship between pm and θ. To get a sense of magnitude, consider pm = 0.6

(our (weighted) average estimate of pm across types; see Table 5) and two prescription of $10 and

$1, 000. The above estimate implies that the more expensive prescription is associated with a pm(θ)

that is 3% greater. Given this small correlation, it is not surprising that this additional flexibility

in the model makes little difference to the overall results of filling the gap (Table 7, row 8).

6 Cross-year substitution

With the exception of Cabral’s (2013) recent work, empirical analyses of the spending effects of

health insurance contracts have typically focused on annual spending effects. Our results thus far

have followed this tradition. However, our focus on the non-linear nature of annual health insurance

contracts raises the possibility that they may induce individuals to engage in cross-year substitution,

and that changes to contract design may therefore have different impacts over a longer-than-annual

period.

Since non-linear contracts are the norm in health insurance, this raises the possibility that the

traditional annual analysis of behavioral effects of insurance contracts may not give an accurate

portrayal of their net spending effects. In our context, individuals who end up in the gap may defer

some late-in-the-year drug purchases that do not require immediate attention to the beginning of

the next year when the coverage schedule “resets”and the expected end-of-year price (as well as

the spot price for the many individuals in no-deductible plans) is lower. When the gap is “filled,”

such cross-year substitution incentives are reduced. If a large part of the annual spending response

to filling the gap reflects the end of such deferrals of drug purchases to the following year, the

budgetary implications of filling the gap may be very different if considered over a longer time
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horizon than the annual analysis that is traditionally done, and that we have engaged in thus far.

In this section, we explore this possibility empirically.

6.1 Descriptive evidence

We saw in Figure 5 that individuals slow their propensity to purchase drugs late in the year once

they are near the kink. This raises the question of whether they never purchase these prescriptions

or simply shift the purchase to the beginning of the next calendar year. To explore this possibility

of cross-year substitution, we examine whether there is a relationship between January spending

in the following year (year y + 1) and total annual expenditures relative to the kink in year y.

We define an individual’s relative spending in January y+1 as the ratio of her January spending

in year y + 1 to her average monthly spending in March to June of y + 1.33 The top panel of

Figure 9 graphs this measure of “relative January spending” in year y + 1 against total annual

expenditures in year y. If the slowdown in purchasing propensity toward the end of the calendar

year as individuals approach the gap simply reflects a decline in drug purchases, there should be no

systematic relationship between relative January spending in the subsequent year and prior year’s

spending. However, if some of the slowdown in purchasing reflects cross-year substitution toward

filling the same prescriptions after coverage resets, we should expect to see higher relative January

spending in year y + 1 for individuals who approach (or enter) the gap in year y.

The results in the top panel of Figure 9 strongly suggest that such cross-year substitution occurs.

For individuals whose spending is far below the gap, spending in the subsequent January appears

representative of any other month later that year. Yet, as individuals come close to the gap (or

end up in it), their subsequent January spending jumps up considerably relative to a “regular”

month, presumably due to accumulated prescription drugs whose purchase could be deferred from

the previous year, when the out-of-pocket price was higher. We define “excess”January spending in

year y+1 as the ratio of average relative January spending in year y+1 for individuals whose annual

spending in year y is between the kink and $500 above it, to average relative January spending in

year y + 1 for individuals whose spending is $500 to $2,000 below the kink in year y. We estimate

excess January spending of 25%. In other words, average relative January spending in year y + 1

for individuals near the gap in year y is 25% higher than average relative January spending in year

y + 1 for individuals further below the gap in year y.

In Appendix Figure A8 we show that, as one would expect, cross-year substitution is greater for

beneficiaries who are covered by a no-deductible plan. Approximately one-quarter of the sample

has a deductible plan in both years, so that if they end up in the gap in year y they face little

change in spot price on January 1 of year y + 1, although their expected end-of-year price likely

drops. For this population, the January effect does not disappear, but its magnitude is noticeably

33We omit February in case some of the January effect “spills”to February, and we omit July to December that are

likely affected by potential substituting between years y+1 and year y+2. The qualitative results are not particularly

sensitive to the set of months used to define an “average month.”
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lower (19% excess January spending, compared to 38% for those in a no-deductible plan in both

years).

We also explored heterogeneity in the extent of cross-year substitution across different types

of people and drugs. Consistent with cross-year substitution being one channel through which

behavioral responses operate, we find that drugs and individuals that are associated with a relatively

high response to the kink also tend to be associated with a relatively high degree of cross-year

substitution. Column 4 of Table 3 shows excess January spending — our measure of cross-year

substitution — for different groups of individuals. We see, for example, that, like excess mass in

column 3, excess January spending in column 4 is much greater for younger beneficiaries than for

older ones. Column 6 of Table 4 shows excess January spending for different types of drugs; in

general, drugs with a larger decline in the probability of a December purchase in column 5 also

have a greater excess January spending in column 6.

The bottom panel of Figure 9 provides evidence that bunching at the kink in year y cannot be

entirely explained by cross-year substitution. We follow a strategy used by Chetty et al. (2011)

and present the density of “adjusted annual spending,”which is the sum of year y’s spending and

the average “excess” January spending (in dollars).34 As the figure shows, the bunching around

the kink (seen previously in Figure 4 when the spending density was plotted as a function of year y

spending relative to the kink) remains when the density is plotted as a function of this “adjusted”

year y spending: it would have been eliminated if the entire response was due to shifting purchasing

to January.35 We can therefore reject the null that cross-year substitution can account for all of

the spending effect at the kink.

34Analogously to the top panel of Figure 9, the excess January spending is measured as the difference, for each

spending bin in year y, between the average January spending in year y + 1 and the average monthly spending in

March to June of year y + 1. We then add the bin-specific (but not beneficiary-specific) excess January spending to

each beneficiary’s year y spending.
35Specifically, the adjustment shrinks the excess mass from our baseline estimate of 0.291 (standard error = 0.003),

to 0.242 (standard error = 0.004). We note that the size of the adjusted excess mass gets smaller as we shrink the

size of the bin used in the adjustment. This is to be expected; in the extreme, when adjusting using spending at

the individual-level (rather than at the bin-average), we see no evidence of bunching relative to “adjusted” annual

spending, presumably reflecting the addition of a large amount of individual-specific realization noise. (Indeed,

consistent with this, an alternative, “placebo”exercise, which adjusts for the difference between the individual’s year

y+ 1 July spending and the average monthly spending in March-June of year y+ 1, also make most of the bunching

disappear.). Yet, under the null that the entire response is driven by cross-year substitution to January, the adjusted

bunching would be eliminated for any bin size within the range we examine excess mass. Therefore, the fact that

it appears large and significant for the bin size plotted in the bottom panel of Figure 9 is suffi cient to reject the

possibility that the entire response at the kink is driven by shifting claims to January.
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6.2 Extending the model to allow for purchase delays

The above descriptive evidence indicates the existence of cross-year substitution, but rejects the

hypothesis that it can explain all of the spending response to the kink. This raises the question of

how much of the increase in annual spending that we estimated would come from filling the gap

represents a decrease in cross-year substitution, rather than a net increase in spending measured

over a time horizon of more than one year. One crude, back-of-the-envelope calculation would be

to assume that the 25% excess January spending we estimated for those who spend just beyond

gap (Table 3, column 4, row 1) applies to the entire population (even those who are not close

to the gap). Given mean annual spending of about $1,900 (Table 1), a 25% increase in January

spending corresponds to about $40 per beneficiary in cross-year substitution. Assuming that all of

this $40 in cross-year substitution is eliminated when the gap is filled, this suggests that cross-year

substitution may account for about a quarter of our $150 estimate of the annual spending increase

from filling the gap.

A problem with this exercise, however, is that our baseline model —from which we estimated

that filling the gap would increase annual spending by $150 —does not itself allow for cross-year

substitution. It assumes that terminal values are given by v(x, 0, λ) = 0 for all x. That is, every

January everything resets, and every beneficiary starts the new calendar year with a a “clean slate,”

regardless of his earlier drug purchase decisions. This is, of course, a simplification, designed to

make the model easier to estimate, identify, and understand. However, we have just shown that

this may be an important abstraction for the spending implications of filling the gap over horizons

of more than a year.

We therefore examine a stylized extension of the baseline model designed to assess the quantita-

tive importance of cross-year substitution for our baseline estimates. The baseline model assumes

that individuals make a binary decision: either to fill a prescription or to never fill it. We now

allow a third, intermediate decision: to defer treatment. We make the simplifying assumption that

all the delayed treatments over the year are collected together, and are treated at one later point,

in January of the subsequent year; this greatly reduces the estimation and computational burden.

Moreover, we assume that individuals make this decision to defer filling a prescription under the

assumption that the out-of-pocket price they will have to pay for these deferred prescriptions is

known at the time of the decision to defer and is given by qi, which we assume is a function of the

individual’s risk score and plan.36 This strong assumption provides intuitive predictions: individu-

als who hit the catastrophic level or those who hit the deductible but don’t expect to hit the kink

may decide to not fill a prescription, but would never defer filling a prescription: the price they

would have to pay in January is higher than what they have to pay when the prescription arrives.

In contrast, individuals who are at the gap (and expect to stay there) are most prone to prefer to

defer filling the prescription until January of the next year.

The rest of the model is similar to the baseline model, with minor modifications that allow us

36Specifically, we divide the risk score distribution into 3 equally-sized bins (lowest third, middle third, and highest

third) and assume that qi is given by the average end-of-year price in each plan and risk score bin.
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to let the utility from deferring filling a prescription differ from the utility from never filling it. As

before, a drug event is described by a pair (θ, ω), except that we now think of ω as the weekly flow

of disutility of not treating the event (rather than the present value of not treating it, as in the

baseline model). We denote by δh ∈ [0, 1] a “new,”additional depreciation parameter associated

with deferred treatments, capturing the possibility that the disutility associated with not taking

the drug may go away over time.

Given these assumptions, the revised Bellman equation becomes

vi(x, t, λ) =

∫ 
(1− λ′)δvi(x, t− 1, λ′)+

λ′
∫

max


−cj(θ, x) + δvi(x+ θ, t− 1, λ′),

−ω 1−(δδh)t

1−δδh − δ
tδthqiθ + δvi(x, t− 1, λ′),

− ω
1−δδh + δvi(x, t− 1, λ′)

 dG(θ, ω)

 dH(λ′|λ),

(13)

where the maximum operator reflects the three possible decisions. The first option is to fill the

current prescription, pay the corresponding out-of-pocket price cj(θ, x), and update the first state

variable. The second option is to defer filling the prescription until January of next year: ω 1−(δδh)t

1−δδh
is the present value of the utility loss from not treating the health event between the current

week until next January, and δtδthqiθ is the present value of the out-of-pocket cost of filling the

prescription in January. The final option is to never treat the event, and the net present value

of the disutility of this is given by ω
1−δδh . It is thus easy to see that without the option to defer,

the extended model is reduced to our baseline model, except that we have to renormalize ω by

1 − δδh. The problem remains a finite horizon dynamic problem, and the terminal value remains

vi(x, 0, λ) = 0 as a normalization (we could have equivalently defined them to be a function of the

deferred prescriptions, but because there is full certainty of the January price, we already account

for the associated costs of deferred prescriptions inside the Bellman equation).

Estimation and identification of the model is generally analogous to that of the baseline model.

In Appendix C.2 we provide more details, but the key difference to highlight is that in addition

to the moments we use for the estimation of the baseline model, we also add a moment, which

attempts to capture the extent of cross-year substitution, and thus helps in the identification of the

key “new”parameters that drive cross-year substitution (δθ and δω).

The bottom panel of Table 6 reports the main results.37 We report the sum of both spending

during the coverage year and any additional January spending that was deferred. That is, the

estimate accounts for the total spending effect of filling the gap, including the amount that was

deferred until January, which is likely to be higher for the observed contracts relative to contracts

in which the gap is filled. Consistent with the descriptive evidence in the bottom panel of Figure 9,

we find that cross-year substitution cannot explain the entire spending effect of the gap. However,

our estimates suggest that accounting for cross-year substitution is quantitatively important: it

37Appendix Table A2 reports all the parameter estimates from this model. We note, however, that the interpretation

of some of the parameters have changed — in particular, ω now describes flow utility rather than a stock —so their

values are not directly comparable to those in the baseline model estimate (Table 5).
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reduces the effect of filling the gap by about two-thirds, from our baseline estimate of $148 per

beneficiary to $44.

7 Conclusions

This paper has explored the spending response to changes in non-linear health insurance contracts.

Non-linear contracts are the norm in health insurance, yet most of the prior, voluminous literature

on the spending effects of health insurance contracts has tried to summarize the spending response

with respect to a single price. In this paper, we instead specify and estimate a dynamic model of

drug use decisions made by an optimizing individual facing a specific non-linear budget set.

We do so in the particular context of Medicare Part D prescription drug contracts. We provide

descriptive evidence of a behavioral response to the kink in the individual’s budget set created by

the famous “donut hole.”We then specify and estimate a simple dynamic model of prescription

drug use that allows us to analyze the response to the entire non-linear budget set. We focus our

counterfactual analysis on the impact on spending of the ACA-legislated “filling of the donut hole”

by 2020. We estimate that this will increase total annual drug spending by $150 per beneficiary

(or about 8%), and Medicare drug spending by much more ($260 per beneficiary, or about 25%).

However, we also estimate that about two-thirds of this annual spending increase may be explained

by a decline in substitution of purchases to the subsequent year, rather than a net increase in spend-

ing. Recognition of the incentives created by non-linear contracts thus suggests the importance of

analyzing the behavioral response to health insurance contracts over a time horizon of longer than

one year, contrary to the current practice in the empirical literature.

Our analysis illustrates several other subtleties in the behavioral response to a non-linear con-

tract. For example, we find that even individuals whose predicted spending does not reach the gap

would still increase their drug use in response to filling the gap, consistent with a dynamic price

response. This illustrates that the set of beneficiaries affected by this policy is not limited to those

near or in the gap. It also illustrates the importance of estimating a dynamic utilization model,

since a static analysis of the utilization response would not capture this effect, which we estimate

accounts for about one-quarter of the increase in annual drug spending from filling the gap.

Our paper has not explored several areas that might be of interest in future work. One is to

consider how mandated changes in contract design (such as “filling of the donut hole”) may affect

other margins: the contracts offered by insurers, the plan-selection response of beneficiaries, and the

pricing of drugs by pharmaceutical companies. Another is to consider the normative implications of

our positive analysis. Some of our findings may be useful inputs here, including our findings that the

kink induces a larger reduction in chronic relative to acute drugs, a larger reduction in drug use by

healthier individuals, and that some (but not all) of the reduction in drug use at the kink represents

purchases postponed to the following year rather than foregone entirely. Additional evidence on

whether there are spillover effects from prescription drug cost-sharing onto non-drug healthcare

spending (such as doctor visits and hospitalization) and to health might also be informative on
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the normative dimension. More formal welfare analysis would also need to take into account the

optimality of drug consumption in the absence of insurance. For example, since the policy of

granting monopolies through the patent system produces drug prices above social marginal cost,

an insurance-induced increase in drug expenditures need not be socially ineffi cient (Lakdawalla

and Sood 2009). Likewise, concerns that incomplete information or potential failures of rationality

may lead individuals to under-consume drugs in the absence of insurance raises the possibility that

insurance-induced increases in drug consumption may be effi ciency enhancing (Baicker et al. 2012).
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Figure 1: Standard benefit design (in 2008)

The figure shows the standard benefit design in 2008. “Pre-Kink coverage” refers to coverage prior to the Initial

Coverage Limit (ICL) which is where there is a kink in the budget set and the gap, or donut hole, begins. As

described in the text, the actual level at which the catastrophic coverage kicks in is defined in terms of out-of-pocket

spending (of $4,050), which we convert to the total expenditure amount provided in the figure. Once catastrophic

coverage kicks in, the actual standard coverage specifies a set of co-pays (dollar amounts) for particular types of

drugs, while in the figure we use instead a 7% co-insurance rate, which is the empirical average of these co-pays in

our data.
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Figure 2: Annual spending distribution (in 2008)

The figure displays the distribution of total annual prescription drug spending in 2008 for our baseline sample. Each

bar represents the set of people that spent up to $100 above the value that is on the x-axis, so that the first bar

represents individuals who spent less than $100 during the year, the second bar represents $100-200 spending, and

so on. For visual clarity, we omit from the graph the 3% of the sample whose spending exceeds $6,500. The kink

location (in 2008) is at $2,510. N =1,251,969.
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Figure 3: Distribution of spending around the kink, by year

The figure displays the distribution of total annual prescription drug spending, separately by year, for individuals in

our baseline sample whose annual spending in a given year was between $1,500 and $3,500 (N=1,332,733 overall; by

year it is 447,006 (2007), 443,317 (2008), and 442,410 (2009)). Each point in the graph represents the set of people

that spent up to $20 above the value that is on the x-axis, so that the first point represents individuals who spent

between $1,500 and $1,520, the second bar represents $1,520-1,540 spending, and so on. We normalize the frequencies

so that they add up to one for each series (year) shown.
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Figure 4: Magnitude of excess mass

Total annual prescription drug spending on the x-axis is reported relative to the (year-specific) location of the kink,

which is normalized to zero. Sample uses beneficiary-years in our 2007-2009 baseline sample whose annual spending is

within $2,000 of the (year-specific) kink location. The points in the figure display the distribution of annual spending;

each point represents the set of people that spent up to $20 above the value that is on the x-axis, so that the first point

represents individuals who spent between -$2,000 and -$1,980 from the kink, the second point represents individuals

between -$1,980 and -$1,960, and so on. We normalize the frequencies so that they add up to one for the range of

annual spending shown. The dashed line presents the counterfactual distribution of spending in the absence of a kink.

This is calculated by fitting a cubic CDF function —that is, for each $20 bin of spending (x, y) we fit F (y)− F (x),

where F (z) = a+ bz + cz2+dz3 — using only individuals with annual spending (relative to the kink location)

between -$2,000 and -$200, and subject to the integration constraints that F (−2000) = 0 and F (+2000) = 1. N

= 2,589,420.
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Figure 5: Timing of drug purchases

Each panel of the figure shows the fraction of individuals who have at least one drug purchase during the

corresponding month (which appears in the panel title) as a function of their total annual spending. The

x-axis reports total annual spending relative to the (year-specific) kink location, which is normalized to

zero. Each point in the graph represents individuals who spend within $20 above the value on the x-axis.

The dashed line in each panel is generated by regressing the logarithm of the share of individuals with no

purchase (in the panel-specific month) in each $20 spending bin, using only individuals with annual spending

(relative to the kink location) between -$2,000 and -$500, on the mid-point of the spending amount in the

bin, weighting each bin by the number of beneficiaries in that bin. Data are our baseline sample in 2007-2009

whose annual spending is within $2,000 of the kink location (N=2,589,420).
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Figure 6: Model fit: spending distribution

Figure shows the distribution of observed and predicted total annual drug spending. The top panel shows the results

for the whole distribution, where each bar represents a $100 spending bin above the value on the x-axis (except for

the last bar, which includes all spending above $5,900). The bottom panel “zooms in”on spending within $1,000 of

the (year-specific) kink (which is normalized to 0) and shows observed and predicted spending in $20 bins, where each

point represents individuals who spend within $20 above the value on the x-axis. Frequencies in the bottom panel are

normalized to sum to 1 across the displayed range. We note that the figure is based on the estimation sample rather

than the baseline sample (see footnote 23), so the summary statistics do not perfectly match those presented

in Table 1.

38



Figure 7: Model fit: claim timing

Figure shows the claim timing pattern of the observed and predicted spending. The x-axis represents calendar

“months”(where a month is a group of four weeks, so we have 13 such “months”in a coverage year), and the y-axis

reports the observed and predicted share of individuals who have at least one claim during that “month.”The gray

lines show this pattern for individuals who (by the end of the year) are well below the kink: their overall spending is

between 800 and 500 dollars below the (year-specific) kink. These individuals tend to increase their monthly spending

over the calendar year as a greater fraction of them hits the deductible and enter the pre-kink coverage arm. The

black lines show this pattern for individual who end up around the kink (within 150 dollars of it, on both sides).

These individuals decrease their propensity to claim toward the end of the year, as shown (in more details) in Figure

5.
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Figure 8: Change in spending from “filling the gap”

Figure shows the change in spending from “filling the gap”(i.e. providing 25% cost-sharing in the gap) for the 2008

standard benefit (which provides no coverage in the gap). In the top panel, the x-axis shows predicted spending

under the 2008 standard benefit. The solid black line shows the mean change in spending for individuals whose

predicted spending under the 2008 standard contract is on the x-axis. The dashed lines show the 10th, 25th, 50th,

75th, and 90th percentile changes in spending. In the bottom panel, we show the average predicted weekly spending,

by calendar week, for the 2008 standard benefit (gray) and for the “filled gap”contract (black).
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Figure 9: Cross-year substitution

The top panel shows the individual’s relative January spending in year y + 1 as a function of her total annual

spending (relative to the kink location, which is normalized to 0) in the prior year (year y). “Relative” January

spending in year y + 1 is defined as the ratio of January spending in year y + 1 to average monthly spending in

March through June (of year y + 1). Each bar on the graph represents individuals within $50 above the value on the

x-axis. The y-axis reports the average, for each year y spending bin, of the “relative January spending”measure. The

dashed, horizontal “counterfactual”relative January spending is calculated as the average relative January spending

for people -500 to -2000 below the kink in year y. This analysis is limited to individuals in our baseline sample in

2007 and 2008 whom we observe in the subsequent year; we exclude individuals in our baseline sample in 2009 since

we do not observe their year y + 1 spending. N=1,534,952.

The bottom panel shows the bunching analysis (from Figure 4), but now as a function of “adjusted”annual spending.

“Adjusted”annual spending is computed by taking total annual spending (in year y) and, for each $50 bin of annual

spending in year y, adding the average dollar difference between January spending in year y + 1 and the average

monthly spending in March to June of year y + 1. “Adjusted” annual spending is reported relative to the kink

location in year y (which is normalized to 0). The sample shown is once again limited to our baseline sample in 2007

and 2008 whom we observe in the subsequent year (N=1,534,952).
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Table 1: Summary statistics

Sample Full Sample Baseline Sample

Panel A: Demographics

Obs. (beneficiary years) 16,036,236 3,898,247
Unique beneficiaries 6,208,076 1,689,308
Age 70.9 (13.3) 75.6 (7.7)
Female 0.60 0.65
Risk scorea n/a 0.88 (0.34)

Panel B: Annual  Total Spending
Mean 2,433 1,888
Std. Deviation 4,065 2,675
Pct with no spending 7.35 5.65
25th pctile 378 487
Median 1,360 1,373
75th pctile 2,942 2,566
90th pctile 5,571 3,901

Panel C: Annual Out of Pocket Spending
Mean 418 778
Std. Deviation 744 968
Pct with no spending 14.64 7.11
25th pctile 29 183
Median 144 464
75th pctile 476 900
90th pctile 1,040 1,971

Table shows summary statistics for the full 20% random sample of Medicare Part D beneficiaries (first column) and

for our baseline sample (second column). We show standard deviations (in parentheses). The major restrictions from

the full sample to the baseline sample are the exclusion of individuals under 65, dually eligible for Medicaid or other

low-income subsidies, or not in stand-alone prescription drug plans. See text for more details on sample restrictions.
a Risk scores are predictions of Part D annual spending using CMS’s 2012 RxHCC risk adjustment model (see text

for details). They are normalized to be 1 on average for Part D beneficiaries. Risk scores in our baseline sample are

reported exclusive of 65 year olds, since risk scores for newly enrolling 65 year olds use a different method and are

only a function of a few crude demographics like gender.
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Table 2: Cost-sharing features

Deductible plans No Ded. plans

Obs. (beneficiary years) 1,036,824 2,861,423

Avg. Deductible Amount 265.9 0
Avg. Deductible Coins. Rate 0.88 ­­

Avg kink locationa 2,523.0 2,541.7
Avg. pre­kink Coins. Rate 0.26 0.37

Pct w/ Some Gap Coverage 0.01 0.17
Avg. Gap Coins. Rate (no gap Coverage) 0.88 0.98
Avg Gap Coins. Rate (some gap coverage) 0.71 0.77

Avg catastrophic limit (out of pocket)a 4,060.0 4,091.8
Catastrophic Coins. Rate 0.07 0.07

a The kink location is defined based on total expenditures; the catastrophic coverage limit is defined based

on out-of-pocket expenditures.
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Table 3: Heterogeneity in response across individuals

Population Share of Sample Share of Spending
Excess January

Spending
(1) (2) (4)

All 100.0 100.0 0.291 (0.003) 1.238

Yeara

   2006 n/a n/a 0.088 (0.008) n/a
   2007 n/a n/a 0.150 (0.008) 1.248
   2008 n/a n/a 0.213 (0.009) 1.228
   2009 n/a n/a 0.293 (0.010) n/a

Gender
   Male 35.0 34.3 0.348 (0.005) 1.269
   Female 65.0 65.7 0.262 (0.004) 1.221

Age group
   66 5.4 4.6 0.519 (0.016) 1.347
   67 5.7 4.9 0.426 (0.015) 1.318
   68­69 11.0 9.8 0.383 (0.009) 1.299
   70­74 24.0 23.0 0.334 (0.006) 1.264
   75­79 19.2 20.2 0.255 (0.006) 1.218
   80­84 15.4 17.6 0.194 (0.006) 1.185
   85+ 14.8 17.8 0.136 (0.007) 1.149

Number of Hierarchical Condition Categoriesb

   0 15.5 6.6 0.837 (0.020) 1.259
   1 8.9 5.0 0.494 (0.018) 1.260
   2 14.9 10.7 0.191 (0.008) 1.227
   3 17.6 16.2 0.197 (0.006) 1.247
   4 15.0 16.9 0.236 (0.007) 1.240
   5+ 28.1 44.6 0.316 (0.005) 1.227

Risk Score Quartile
   1 (healthiest) 25.1 11.9 0.448 (0.011) 1.252
   2 25.1 19.3 0.155 (0.005) 1.238
   3 24.9 26.7 0.250 (0.005) 1.245
   4 (least healthy) 25.0 42.2 0.346 (0.005) 1.221

Excess Mass

(3)

Table reports excess mass at the kink and the excess January spending separately for different populations. Excess

mass and excess January spending are calculated separately for each group. For the excess mass calculation for a

given group, we compute the number of people within $200 of the kink and estimate (counterfactually, using the

approached described in Figure 4) how many people (in that group) would have been in that range in the absence

of the kink. Our excess mass estimate is the percentage increase in the people observed at the kink relative to

the number we estimate would be there in the absence of the kink. Bootstrapped standard errors (in parentheses)

are calculated based on 500 replications of the bootstrap. Row 1 shows the results for the baseline sample (from

Figure 4; N =2,589,420). Subsequent rows show results for the indicated sub-samples. Excess January spending is

calculated for each sub-sample as the ratio of year y + 1’s relative January spending (which is defined as January

y + 1 spending relative to the monthly average of year y + 1’s March to June spending) for individuals between $0

and $500 of the kink in year y compared to this same calculation for those between -$500 and -$2000 of the kink in

year y + 1.
a For the analysis by year we add in the first year of the Part D program (2006); the results “by year”are shown for

the sub-sample of approximately two-fifths of individuals who joined in January 2006 and remain in the sample for

complete years through 2009.
b The hierarchical condition categories are inputs in the CMS risk score; they are meant to capture conditions that

are predictive of higher drug spending in the next year.
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Table 4: Heterogeneity in response across drug types

Actual Predicted
P(Dec. Purchase) P(Dec. Purchase)

(1) (2) (3) (4) (6)

All 100.0 100.0 0.846 0.923 0.083  (0.001) 1.238

Chronic 69.6 77.1 0.762 0.867 0.121  (0.001) 1.251
Acute 30.4 22.9 0.532 0.590 0.099  (0.002) 1.206

Maintenance 85.1 90.1 0.807 0.899 0.103  (0.001) 1.142
Non­Maintenance 14.9 9.9 0.303 0.330 0.080  (0.004) 1.270

Brand 33.4 74.8 0.624 0.780 0.199  (0.001) 1.247
Generic 66.6 25.2 0.731 0.798 0.085  (0.001) 1.133

"Inappropriate" a 2.7 1.3 0.075 0.085 0.119  (0.009) 1.202

Percent of
purchases

Percent of
spending ($)

Drug Type
Percent decrease in
purchase probability

Excess January
spending

(5)

Table shows overall, and then separately by drug type, the change in the probability of a purchase in December

around the kink location. The analysis is done on the same sample analyzed in Figure 5 (N=2,589,420). The “actual”

probability of a December purchase (column (3)) is the probability someone whose annual spending is within $200

of the kink location fills at least one prescription in December. The “predicted”probability of a December purchase

within $200 of the kink location (column (4)) is designed to reflect what the probability of a December purchase

would have been in the absence of the kink. It is estimated (as in the dashed line in Figure 5) by regressing the

logarithm of the share of individuals with no December purchase in each $20 spending bin (between -$2,000 and

-$500) on the mid-point of the spending amount in the bin, weighting each bin by the number of beneficiaries in that

bin. When looking separately by drug type, the “actual” and “predicted”probabilities are calculated based on the

probability of a purchase for a specific drug type. Column (5) shows the percent decrease in purchase probability,

i.e. the predicted minus actual December purchase probability as a percent of the predicted. Bootstrapped standard

errors (in parentheses) are calculated by estimating the actual and predicted probability of a December purchase of

a given type based on 500 bootstrap replications. In column (6) we report excess January spending (in year y + 1)

for each drug type. Excess January spending is calculated for each sub-sample as the ratio of year y + 1’s relative

January spending (which is defined as January y + 1 spending relative to the monthly average of year y + 1’s March

to June spending) for individuals between $0 and $500 of the kink in year y compared to this same calculation for

those between -$500 and -$2000 of the kink in year y + 1.
a Following Zhang et al. (2010), we proxy for inappropriate drug use using an indicator from the Healthcare

Effectiveness Data and Information Set (HEDIS) on whether the drug is considered high-risk for the elderly (HEDIS

2010).
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Table 5: Parameter estimates

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.59 3.98 ­4.37 ­4.35

­­ (0.029) (0.018) (0.011) (0.03)

Beta_Risk 0.00 ­2.46 ­2.85 4.10 6.18
­­ (0.028) (0.021) (0.011) (0.039)

Beta_65 0.00 ­0.10 1.34 0.93 ­1.60
­­ (<0.001) (<0.001) (<0.001) (<0.001)

δ
μ ­0.003 4.00 2.95 4.32 4.30

(<0.001) (0.002) (0.001) (0.002) (0.002)

σ 2.37 1.18 1.58 0.42 1.43
(0.145) (0.005) (0.002) (0.002) (0.002)

p 0.86 0.90 0.50 0.51 0.37
(0.004) (0.005) (0.004) (0.002) (0.001)

λlow 0.010 0.13 0.56 0.78 0.40
(<0.001) (0.001) (0.001) (0.002) (<0.001)

λhigh 0.011 0.14 0.63 0.88 0.45
(<0.001) (0.001) (0.001) (0.003) (<0.001)

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.05 0.29 0.35 0.03 0.29

For age=65 0.00 0.14 0.86 0.00 0.00
For age>65 0.05 0.29 0.33 0.03 0.30

Other implied quantities:
d(Share)/d(Risk) 0.01 ­0.38 ­0.51 0.06 0.83

E(θ) 17 209 67 82 204

Implied annual expected spending:
Full insurance 10 815 2,183 3,749 4,773

0.25 coins. Rate 8 631 1,913 3,276 4,326

­­­­­­­­­­­­­­­­­­­ 0.961 (0.0013) ­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­ 0.552 (0.001) ­­­­­­­­­­­­­­­­­­­
­­­­­­­­­­­­­­­­­­­ 0.565 (0.001) ­­­­­­­­­­­­­­­­­­­

Top panel reports parameter estimates, with standard errors in parentheses. Standard errors are calculated using the

asymptotic variance of the estimates (see equation (10)), with M estimated by the numeric derivative of the objective

function. Bottom panels report implied quantities based on these parameters. Note that spending depends on the

arrival rate of drug events (λ), the distribution of event size (θ), as well as on the decision to claim, which is affected

by the features of the contract and the parameter p.
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Table 6: Spending effect from filling the gap

Mean Std. Dev. 25th pctile Median 90th pctile Mean OOP Mean Insurer

Assign everyone to Standard 2008 contract:
1 Baseline 1,760 1,924 402 1,413 3,632 809 951
2 "Filled" gapa 1,964 2,127 407 1,455 4,450 655 1,309

Assign everyone observed (chosen) contract:
3 Baseline 1,768 1,909 499 1,342 3,675 796 973
4 "Filled" gapa 1,916 2,051 502 1,371 4,287 690 1,226

Assign everyone observed (chosen) contract, plus allow cross­year substitution:
5 Baseline 1,770 1,912 501 1,337 3,749 807 963
6 "Filled" gapa 1,814 1,964 501 1,341 3,956 658 1,155

Table reports the predicted annual drug spending under various observed and counterfactual contracts. All columns

report total annual drug spending except the rightmost two which separately report out-of-pocket and insurer spend-

ing. Rows 1 and 2 report predicted spending under the standard contract in 2008, which was illustrated in Figure 1,

and counterfactual changes to it. Rows 3 and 4 report predicted spending for the observed contracts in our sample,

and counterfactual changes to them. Rows 5 and 6 repeat the same exercise (as in rows 3 and 4), but use the extension

of the model that accounts of cross-year substitution. For all of the simulations, we assume individuals are in the

contract for a full 12 months. (Predicted mean spending for observed contracts - row 3 - is slightly higher than the

estimate reported in the top panel of Figure 6 because of the assumption here that everyone is in the contract for 12

months).
a “Filling the gap”means that, above the deductible, the plan now has a constant co-insurance rate, without a kink,

until out-of-pocket expenditure hits the catastrophic limit. For each plan, we use the observed (pre-kink) co-insurance

rate (which is 25% in the 2008 standard benefit plan.). For the less than 1% of plans where our calculated pre-kink

co-insurance rate is higher than our calculated co-insurance rate in the gap, we do not adjust cost-sharing in the

counterfactual.
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Table 7: Robustness

Baseline "Filled" Gap Change Baseline "Filled" Gap Change

1 Baseline model 1,768 1,916 8.4% 973 1,226 26.0%

Number of types:
2 Three types 1,778 1,878 5.6% 986 1,208 22.5%
3 Six types 1,760 1,937 10.1% 967 1,240 28.2%

Different sets of covariates:
4 Remove all covariates 1,783 1,892 6.1% 976 1,209 23.9%
5 Add "no gap" covariate 1,758 1,946 10.7% 968 1,246 28.7%

Concave (risk averse) utility function:
6 CARA = exp(­6.5) 1,737 1,873 7.8% 945 1,193 26.2%
7 CARA = exp(­9.5) 1,738 1,862 7.1% 940 1,183 25.9%

Distribution of ω:
8 ω correlated with θ 1,781 1,918 7.7% 983 1,230 25.1%

Total Spending Insurer Spending

Table shows how the predictions of the model are affected by different specifications of the economic or econometric

model. The first row presents the results from the baseline model (as reported in rows 3 and 4 of Table 5). Row 2 and

3 report results in which we explore the sensitivity of the results to the number of discrete types (M): the baseline

model assumes M = 5, while row 2 assumes M = 3, and row 3 assumes M = 6. Row 4 reports results in which

we do not use any covariates zi to estimate the propensity of each individual to be of each type, while row 5 uses the

baseline covariates (a risk score, and an indicator for a 65 year old) and also adds an additional covariate, an indicator

for a beneficiary who selected a plan with no gap coverage. Rows 6 and 7 report results that are based on estimating

a recursive utility model that allows for risk aversion as described in the main text (relative to the risk neutrality

assumption of the baseline model). The two values of the (absolute) risk aversion parameter are imposed, such that

they span the range of risk aversion estimates reported in Handel (2013). Finally, row 8 reports an extension of the

model that allows the moral hazard parameter p to vary with θ, as described in the main text.
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Appendix A: Spending around the deductible

The same standard economic theory that generates bunching at the (convex) kink as individuals

enter the gap, should also generate “missing mass”at the concave kink created by the sharp price

decreases when individuals hit the deductible amount or hit the catastrophic coverage limit (see

Figure 1). It is diffi cult to analyze the distribution of spending around the catastrophic limit.38

Appendix Figure A3, however, shows no evidence of such missing mass around the deductible level

for individuals in plans with the standard deductibles. We exclude from the analysis the roughly

10% of people in plans with a (non-zero) deductible that is not the standard deductible level. As

with the location of the kink, the level of the deductible is set differently each year in the standard

benefit. It is $265 in 2007, $275 in 2008, and $295 in 2009.

This finding of excess mass (bunching), but not missing mass, is mirrored in the labor supply

context where previous research has similarly found excess mass in annual earnings in convex kinks

but not missing mass at concave kinks (Saez 2010). One potential rationale for the bunching at

the gap but the lack of “missing mass” at the deductible amount might be that it is easier to

stop (or delay) utilization in response to an increase in price at the gap than it is to increase (or

speed up) utilization because of an anticipated decrease in price if one were to hit the deductible

level. It would be interesting to see if this lack of missing mass at non-convex kinks is a broader

phenomenon, and if so to understand why. In the context of health insurance, typical contracts

specify a price that is decreasing in total spending, so that most of the generated kinks are non-

convex. Some health insurance contracts, however, have convex kinks, such as high-deductible

Health Reimbursement Accounts, where the price the consumer faces increases discontinuously

when the employer contribution to help cover the deductible is exhausted (Lo Sasso et al. 2010).

Appendix B: Estimation details

Simulation We estimate our model using simulated minimum distance. As described in Section

4.4:

ϕ̂ ∈ arg min
ϕ∈Ψ

(mn −ms(ϕ))′Wn(mn −ms(ϕ)).

To calculate ms(ϕ) we simulate data given a vector of parameters. To do so, we first calculate the

value function for each latent type and plan combination as described below. For each observation

we then simulate S claim histories. Given a person’s chosen plan, age, and other characteristics we

simulate a sequence of claims. We first draw the person’s type mis from a multinomial distribution

with probabilities exp(ziβm)/
(∑M

k=1 exp(ziβk)
)
. Then, starting from the first week of the year

38Analysis of the spending distribution around the catastrophic limit is noisy for two reasons. First, only few
people spend enough to put them in the range of the catastrophic limit, so sample sizes are small. Second, the
catastrophic limit is a function of out-of-pocket spending, not total spending. However, the distribution of out-of-
pocket spending changes mechanically when cost-sharing changes. We therefore would need to analyze the distribution
of total spending around the catastrophic limit, but the mapping (from out-of-pocket spending to its associated total
spending) introduces additional noise. Therefore, although we find no evidence of missing mass at the catastrophic
limit, given these data issues we do not consider the result particularly informative.
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(t = 51) and going until the final week of the year (t = 0), we simulate a claim history.39

Cumulative spending begins with xis,51 = 0. The initial health state, λist, is drawn from its type

specific stationary distribution. Each week there is an event with probability λist. When there is

an event, the log potential claim is log θist ∼ N(µmis , σ
2
mis). The utility cost of not filling the claim

is ωist, which is equal to θist with probability 1 − pmis and uniform on (0, θist) with probability

pmis . The claim is filled if

−cj(θist, xist) + δvjm(xist + θist, t− 1, λist) ≥ −ωist + δvjm(xist, t− 1, λist),

In this case, xist−1 = xist + θist. Otherwise, xist−1 = xist. Finally, λist−1 is drawn from Hm(·|λist).
We repeat this simulation until t = 0. We then use the simulated data to calculate the statistics

described in Section 4.4. Since the number of observations is large, we use one simulation per

observation (S = 1).

Minimization Throughout the minimization of the objective function, the underlying random

draws are kept constant and only shifted and/or rescaled as the parameters change. Nonetheless,

the simulated objective is not continuous with respect to ϕ due to discrete changes in whether

some simulated potential claims are filled or not. The large number of potential sequences of

claims makes smoothing the objective function diffi cult. Instead, we use a minimization algorithm

that is robust to poorly behaved objectives, the covariance matrix adaptation evolution strategy

(CMA-ES) of Hansen (2006). Like simulated annealing and various genetic algorithms, CMA-ES

incorporates randomization, which makes it effective for global minimization. Like quasi-Newton

methods, CMA-ES also builds a second order approximation to the objective function, which makes

CMA-ES much more effi cient than purely random or pattern based minimization algorithms. In

comparisons of optimization algorithms, CMA-ES is among the most effective existing algorithms,

especially for non-convex non-smooth objective functions (Hansen et al. 2010; Rios and Sahinidis

2013). Andreasen (2010) shows that CMA-ES performs well for maximum likelihood estimation of

DSGE models. As discussed by Hansen and Kern (2004), an important parameter for the global

convergence of CMA-ES is the population size. We initially set the population size to the default

value of 15 (which is proportional to the logarithm of the dimension of the parameters), and then

increased it to 100. The computation is primarily CPU bound. The estimation takes roughly four

days to run on a server with two Intel Xeon E5-2670 eight-core processors.

Calculation of value function Each individual’s value function depends on her chosen plan, j,

and her unobserved type, m. As in equation (2), the Bellman equation is

vjm(x, t, λ) = Em

[
(1− λ′)δvjm(x, t− 1, λ′) + λ′

(
max

{
−cj(θ, x) + δvjm(x+ θ, t− 1, λ′),

−ω + δvjm(x, t− 1, λ′)

})∣∣∣∣∣λ
]
,

39For 65 year olds we start from the week they enrolled in Medicare Part D. Since our data only contains the
month, but not week, of enrollment, we draw the enrollment week from a uniform distribution within the enrollment
month.
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where the subscripts denote plan j and type m. The expectation is subscripted by m to emphasize

that it depends on the type-specific distribution of θ, ω, and λ′. Given that vjm(x, 0, λ) = 0, we can

compute an approximation to vjm sequentially. First, we approximate vjm(x, 1, λ). Then, we use

that approximation to compute vjm(x, 2, λ), and so on. To be more specific, let {xk,j}Kk=1 be a large

set of values of x that cover the support of x. Then, given some approximation to vjm(x, t− 1, λ),

say ṽjm(x, t− 1, λ), we compute

vk,jmλ = (1− λm)δṽjm(xk,j , t− 1) + λmEm

[
max

{
−cj(θ, xk,j) + δṽjm(xk,j + θ, t− 1, λ′),

−ω + δṽjm(xk,j , t− 1, λ′)

}∣∣∣∣∣λm
]
.

We then calculate ṽjm(x, t, λ) using linear interpolation between the {(xk,j , vk,jmλ)} values.40 We
allow xk,j to differ for each plan. For each plan, xk,j is set to 20 evenly spaced points between 0

and the deductible amount, 20 evenly spaced points between the deductible amount and the kink

location, 20 evenly spaced points in the gap, and only 2 points above the catastrophic limit. Thus,

plans with a deductible use K = 62 interpolation points and plans without a deductible use K = 42

interpolation points. Above the catastrophic limit, c(θ, x) = Cθ for some constant C, so the value

function is constant and two interpolation points suffi ce.

To calculate vk,jmλ, we must integrate over θ, ω, and λ′. λ′ is discrete, so integrating over its

distribution is straightforward. For θ and ω, we must compute

Em [max {−cj(θ, xk) + δṽjm(xk + θ, t− 1, λ) , −ω + δṽjm(xk, t− 1, λ)}] .

We approximate the expectation over θ using Gauss-Hermite quadrature with 30 integration points.

Given the assumed distribution of ω/θ, the remaining conditional expectation over ω given θ has a

closed form. In particular,

Em

[
max

{
−cj(θ, xk,j) + δṽjm(xk,j + θ, t− 1, λ),

−ω + δṽjm(xk,j , t− 1, λ)

}]
=

=Em


P
(
cj(θ,xk,j)−δṽjm(xk,j+θ,t−1,λ)+δṽjm(xk,j ,t−1,λ)

θ ≤ ω
θ

∣∣∣ θ) (−cj(θ, xk,j) + δṽjm(xk,j + θ, t− 1, λ)) +

+

 P
(
cj(θ,xk,j)−δṽjm(xk,j+θ,t−1,λ)+δṽjm(xk,j ,t−1,λ)

θ > ω
θ

∣∣∣ θ) ·
·
(
E
[
−ω

∣∣∣ cj(θ,xk,j)−δṽjm(xk,j+θ,t−1,λ)+δṽjm(xk,j ,t−1,λ)
θ > ω

θ

]
+ δṽjm(xk,j , t− 1, λ)

) 
 ,

where

P
(
C ≤ ω

θ

∣∣∣ θ) =


0 if C ≤ 0

pmC if C ∈ (0, 1)

1 if C ≥ 1

and

E
[
ω
∣∣∣ω
θ
< C

]
=


Cpm

2 if C ∈ [0, 1)

1− pm + pm
2 if C ≥ 1

.

40We also experimented with shape preserving cubic interpolation. The resulting value function approximation is
very similar. We use linear interpolation in the estimation because it is less computationally intensive.
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Code The estimation code is written in C++. It is available at https://bitbucket.org/paulschrimpf/medicared/

overview. It uses the covariance matrix adaptation evolution strategy (CMA-ES) of Hansen and

Kern (2004) and Hansen (2006) to minimize the objective function. ALGLIB (www.alglib.net) is

used for random number generation, interpolation, and integration.

Appendix C: More details about model extensions

In the main text we report results from various variants and extensions to the baseline model.

Some of the variations, like changing the number of types, are mechanical. Others require some

explanation. This section describes the two less trivial variations of the model, and how the value

function computation is altered for each.

C.1 Allowing for risk aversion

As stated in the main text, we introduce constant absolute risk aversion while maintaining perfect

intertemporal substitution by specifying recursive preferences as in Kreps and Porteus (1978) or

Epstein and Zin (1989). Individual preferences over a stochastic sequence of flow utilities, {ut}, are
defined recursively as

Vt = ut + δ

(
−1

α

)
logEt[e

−αVt+1 ],

where α is the coeffi cient of absolute risk aversion. Using the form of ut in our model, this becomes

Vt = −`tdtcj(θt, xt) + `t(1− dt)(−ωt) + δ
−1

α

{
dt`t logE[exp(−αVt−1)|xt−1 = xt + θt, λt = λ]+

+(1− dt`t) logE[exp(−αVt−1)|xt−1 = xt, λt = λ]

}
,

where `t = 1 if there was a prescription to potentially fill and dt = 1 if the prescription was filled.

The expected value function is

ṽ(x, t, λ) =
∑
λ′

P (λ′|λ)

 λ′E

[
exp

(
−αmax

{
−cj(θ, x) + δ−1

α log ṽ(x+ θ, t− 1, λ′),

−ω + δ−1
α log ṽ(x, λ′, t− 1)

})]
+(1− λ′)ṽ(x, t− 1, λ′δ)

 .

Let

v(x, t, λ) =
−1

α
log ṽ(x, t, λ).

The Bellman equation for v is then

v(x, t, λ) =
−1

α
log

∑
λ′

P (λ′|λ)

 λ′E

[
exp

(
−αmax

{
−cj(θ, x) + δv(x+ θ, t− 1, λ′),

−ω + δv(x, t− 1, λ′)

})]
+(1− λ′) exp(−αδv(x, t− 1, λ′))




The expectation of the maximum is calculated in a similar way as in the risk neutral case.

53



C.2 Allowing for the delay of purchasing to subsequent year

As described in the main text, we assume that each prescription must be filled either immediately, at

the start of next year, or never. A potential prescription comes with a monetary cost θ and a utility

flow cost of not filling ω. If a potential prescription is not filled, then each period θ depreciates at

rate δδh and ω depreciates at rate δh. Unfilled prescriptions may be filled at the start of the next

year at a (known) expected price qi. We assume that qi is known and taken as given. To calculate

it, we calculate E[p|risk score,plan] and assume that people use their current year risk score and

plan to predict next year’s end-of-year price. We compute qi = E[p|risk score,plan] by dividing risk

score into 3 bins (lowest third, middle third, and highest third) and taking the average observed

end-of-year price in each plan and bin.

With these assumptions, the dynamic optimization is different for each plan and risk score bin,

so we subscript the value function by i to capture the idea that it varies with qi, which as described

varies by plan and risk score tercile. Then, the value functions can be written as

vi(x, t, λ) =

∫ 
(1− λ′)δvi(x, t− 1, λ′)+

+λ′
∫

max


−cj(θ, x) + δvi(x+ θ, t− 1, λ′),

−ω 1−(δδh)t

1−δδh − δ
tδthqiθ + δivi(x, t− 1, λ′)

− ω
1−δδh + δvi(x, t− 1, λ′)

 dG(θ, ω)

 dH(λ′|λ),

To calculate the value function we must compute,

∫
Θ

∫
Ω

max


−cj(θ, x) + δvi(x+ θ, t− 1, λ′),

−ω 1−(δδh)t

1−δδh − δ
tδthqiθ + δvi(x, t− 1, λ′)

− ω
1−δδh + δvi(x, t− 1, λ′)

 dG(ω|θ)dG(θ).

We calculate the inner integral analytically using the assumption that ω
θ ∼ U(0, 1), and calculate

the outer integral using quadrature. The inner integral can be written as

B = θ

∫ 1

0
max


−cj(θ,x)+δvi(x+θ,t−1,λ′)

θ ,

− r
1−δδh + δvi(x,t−1,λ′)

θ ,

−r 1−(δδh)t

1−δδh − (δδh)tqi + δvi(x,t−1,λ′)
θ

 dr.

The values of r where we switch from one of the three terms in the max to another are

r1 =

(
δh
δh

)t
qi(1− δδh)

r2 =
1− δδh

θ

(
cj(θ, x)− δvi(x+ θ, , t− 1, λ′) + δvi(x, t− 1, λ′)

)
r3 =

1− δδh
1− (δδh)t

1

θ

(
cj(θ, x)− δvi(x+ θ, t− 1, λ′) + δvi(x, t− 1, λ′)− (δδh)tqi

)
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If 0 ≤ r1 ≤ r2 ≤ r3 ≤ 1, then our expression for the inner integral becomes

B = θ


∫ r1

0 −
r

1−δδh + δvi(x,t−1,λ′)
θ dr+

+
∫ r3
r1
−r 1−(δδh)t

1−δδh − (δδh)tqi + δvi(x,t−1,λ′)
θ dr+

+
∫ 1
r3
− cj(θ,x)+δvi(x+θ,,t−1,λ′)

θ dr



=

 −θ
r21/2

1−δδh + r1δvi(x, t− 1, λ′)+

−1
2(r2

3 − r2
1)1−(δδh)t

1−δδh +
[
−(δδh)tqiθ + δvi(x, t− 1, λ′)

]
(r3 − r1)+

+(1− r3)
[
−cj(θ, x) + δvi(x+ θ, , t− 1, λ′)

]
 .

It will always be true that 0 ≤ r1 ≤ 1. However, the rest of these inequalities need not hold. If

0 ≤ r2 ≤ r1 ≤ r3, then the integral is

B = θ

( ∫ r2
0 −

r
1−δδh + δvi(x,t−1,λ′)

θ dr+

+
∫ 1
r2
− cj(θ,x)+δvi(x+θ,,t−1,λ′)

θ dr

)

=

(
−θ r22/2

1−δδh + r2δvi(x, t− 1, λ′)+

+(1− r2)
[
−cj(θ, x) + δvi(x+ θ, , t− 1, λ′)

] ) .
Other cases are treated similarly.

Additional references mentioned only in the appendix

Andreasen, Martin Møller. (2010). “How to Maximize the Likelihood Function for a DSGE Model.”

Computational Economics. 35(2): 127-154.

Lo Sasso, Anthony, Lorens Helmchen and Robert Kaestner. 2010. “The Effects of Consumer

Directed Health Plans on Health Care Spending.”Journal of Risk and Insurance 77(1): 85-103.
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Appendix Figure A1: Rationale for bunching

This figure illustrates graphically the theoretical prediction that individuals will bunch at the convex kink point in

their budget set. The solid line illustrates the budget set of the same standard benefit design as in Figure 1; the

standard budget set has a kink (price increase) at $2,510 in total spending. By contrast, the dashed line considers an

alternative budget set with a linear budget (above the deductible) at the co-insurance arm’s cost sharing rate. The

solid and dashed indifference curves represent two individuals with different healthcare needs who would have different

total drug spending under the linear contract. The (healthier) individual denoted by the solid indifference curve is

not affected by the introduction of this kink; his indifference curve remains tangent to the lower part of the budget

set. The (sicker) individual with the dashed indifference curves consumed above the kink under the linear budget

set; with the introduction of the kink her indifference curve is now exactly tangent to the upper part of the budget

set at the kink. With the introduction of the kink, this latter individual would therefore decrease total spending to

the level of the kink location. By extension, any individual whose indifference curve was tangent to the linear budget

set at a spending level between that of the two individuals shown would likewise decrease total spending to the level

of the kink location, thereby creating “bunching”at the kink.
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Appendix Figure A2: Distribution of spending for those individuals with non-standard
kink location

Our baseline sample consists of individuals with a standard kink location. A small sample of individuals excluded

from the baseline sample have a kink at an amount that is different from the standard level. The modal non-standard

kink amount is $2,100; most of these plans are in 2007 or 2008. The figure displays the histogram of total annual

prescription drug spending (in $20 bins) for individuals with the modal ($2,100) non-standard kink location in 2007

or 2008. Such individuals are not in our baseline sample. The x-axis reports total spending relative to the $2,100

kink location. The dashed vertical lines indicate the level of the standard kink locations in 2007 ($2,400) and 2008

($2,510). Frequencies are normalized to sum to 1 across the displayed range. N =12,188. The figure shows that

for individuals in plans with the $2,100 kink location, there is evidence of excess mass around $2,100 but not at the

standard kink locations. Naturally, the figure is somewhat noisier than the baseline analyses that use the considerably

larger baseline sample.
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Appendix Figure A3: Distribution of spending around the deductible amount

The figure displays the histogram of total annual prescription drug spending (in $10 bins) for individuals in

our baseline sample in plans with the (year-specific) standard deductible amount (which was $265 in 2007,

$275 in 2008, and $295 in 2009). The x-axis reports total spending relative to the (year-specific) deductible

amount. Frequencies are normalized to sum to 1 across the displayed range. N =186,535.
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Appendix Figure A4: Excess mass by plan

Figure graphs the excess mass in different plans against the size of the kink (i.e. the size of the price increase faced

by the consumer as she moves into the gap). The size of the circles is proportional to the number of beneficiaries

in the plan. Analysis is limited to the approximately 80% of our baseline sample who are in plans with at least

1,000 beneficiaries within $2,000 of the kink. Excess mass is calculated separately for each plan using the exact same

procedure described for Figure 4. The dashed line in the figure represents the enrollee-weighted regression line of the

relationship between excess mass and kink size; the slope of the line is 0.19 (standard error = 0.08) and the regression

has an R-square of 0.011. N =1,985,676.
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Appendix Figure A5: Out-of-sample fit: spending distribution

Figure presents the out-of-sample fit of the model. Top left panel replicates the in-sample fit of the model

as in the top panel of Figure 6 in the main text. Recall (see footnote 23) that for estimation we limit the

baseline sample to the 500 most common plans, and then only use a 10% random subsample to reduce the

computational time. The top right panel presents the fit of the model predictions against a different 10%

random subsample. The bottom left presents the model prediction for other plans (those that are not the 500

most common), taking these plans’features into account when generating predictions. Finally, the bottom

right panel presents the model prediction for 2010 spending (recall that our baseline data covers 2007-2009

only). Here the fit is not as striking, presumably due to macroeconomic changes (e.g., in drug prices) that

change over time. Still, the model’s prediction change (relative to the 2009 predictions) in the right direction.
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Appendix Figure A6: Out-of-sample fit: bunching

Figure presents the out-of-sample fit of the model. Top left panel replicates the in-sample fit of the model

as in the bottom panel of Figure 6 in the main text. Recall (see footnote 23 ) that for estimation we limit

the baseline sample to the 500 most common plans, and then only use a 10% random subsample to reduce

the computational time. The top right panel presents the fit of the model predictions against a different

10% random subsample. The bottom left presents the model prediction for other plans (those that are not

the 500 most common), taking these plans’features into account when generating predictions. Finally, the

bottom right panel presents the model prediction for 2010 spending (recall that our baseline data covers

2007-2009 only). Here the fit is not as striking, presumably due to macroeconomic changes (e.g., in drug

prices) that change over time. Still, the model’s prediction change (relative to the 2009 predictions) in the

right direction.
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Appendix Figure A7: Out-of-sample fit: claim timing

Figure presents the out-of-sample fit of the model. Top left panel replicates the in-sample fit of the model

as in Figure 7 of the main text. Recall (see footnote 23) that for estimation we limit the baseline sample to

the 500 most common plans, and then only use a 10% random subsample to reduce the computational time.

The top right panel presents the fit of the model predictions against a different 10% random subsample. The

bottom left presents the model prediction for other plans (those that are not the 500 most common), taking

these plans’features into account when generating predictions. Finally, the bottom right panel presents the

model prediction for 2010 spending (recall that our baseline data covers 2007-2009 only). Here the fit is not

as striking, presumably due to macroeconomic changes (e.g., in drug prices) that change over time. Still,

the model’s prediction change (relative to the 2009 predictions) in the right direction.
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Appendix Figure A8: Relative January spending by plan type

Figure replicates the top panel of Figure 9, but does it separately for beneficiaries who are enrolled in a deductible

plan (black bars, N = 305, 437) and no-deductible plan (gray bars, N = 1, 148, 102) in year y + 1. Figure shows

the individual’s relative January spending in year y + 1 as a function of her total annual spending (relative to the

kink location, which is normalized to 0) in the prior year (year y). “Relative” January spending in year y + 1 is

defined as the ratio of January spending in year y + 1 to average monthly spending in March through June (of

year y + 1). Each bar on the graph represents individuals within $50 above the value on the x-axis. The y-axis

reports the average, for each year t spending bin, of the “relative January spending”measure. The dashed, horizontal

“counterfactual”relative January spending is calculated as the average relative January spending for people -500 to

-2000 below the kink in year y.
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Appendix Table A1: Implied price elasticities

(Uniform) Price Reductiona Average Annual Spending Implied "Elasticity"b

0% (Baseline) 1,760
1.0% 1,769 ­0.54
2.5% 1,776 ­0.38
3.0% 1,779 ­0.36
3.5% 1,781 ­0.35
5.0% 1,789 ­0.33
7.5% 1,801 ­0.31

10.0% 1,813 ­0.30
15.0% 1,837 ­0.29
25.0% 1,887 ­0.29
50.0% 2,018 ­0.29
75.0% 2,163 ­0.31

Table shows the model’s estimate of the impact of various changes to the 2008 standard benefit budget set (shown

in Figure 1). The first row shows predicted average annual spending under the existing budget set. Other rows show

predicted average annual spending (and the implied “elasticity”) of various uniform price reductions to this budget

set.
a “Uniform price reduction” is achieved by reducing the price (i.e. consumer coinsurance) in every arm of the 2008

standard benefit by the percent shown in the table.
b The implied “elasticity” is calculated by computing the ratio of the percent change in spending (relative to the

baseline) to the percent change in price (relative to the baseline).
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Appendix Table A2: Parameter estimates from the extension of the model

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.45 3.94 ­4.51 ­4.43

­­ (0.0006) (0.0003) (0.0004) (0.0003)

Beta_Risk 0.00 ­2.49 ­2.85 4.07 6.06
­­ (0.0006) (0.0005) (0.0003) (0.0003)

Beta_65 0.00 ­0.10 1.19 1.08 ­1.52
­­ (0.0009) (0.0001) (0.0003) (0.0001)

δ
δω (=δθ)
μ ­0.04 3.98 3.00 4.30 4.25

(0.0001) (0.0044) (0.0001) (0.0045) (0.0046)

σ 2.46 1.29 1.64 0.28 1.46
(0.0001) (0.0040) (0.0040) (0.0025) (0.0060)

p 0.87 0.94 0.58 0.59 0.29
(0.0001) (0.0007) (0.0050) (0.0071) (0.0013)

λlow 0.005 0.09 0.44 0.64 0.31
(0.0001) (0.0004) (0.0017) (0.0035) (0.0012)

λhigh 0.006 0.12 0.58 0.84 0.41
(<0.0001) (0.0001) (0.0018) (0.0049) (0.0009)

Pr(λt=λlow|λt+1=λlow)
Pr(λt=λhigh|λt+1=λhigh)

Implied shares:
Overall 0.06 0.27 0.37 0.03 0.28

For age=65 0.01 0.14 0.85 0.00 0.00
For age>65 0.06 0.27 0.35 0.03 0.29

Other implied quantities:
d(Share)/d(Risk) 0.01 ­0.35 ­0.53 0.06 0.80

E(θ) 20 123 76 77 204

Implied annual expected spending:
Full insurance 6 753 2,280 3,338 4,295

0.25 coins. Rate 5 577 1,951 2,845 3,988

­­­­­­­­­­­­­­­­­­­ 0.661 (0.003) ­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­ 0.549 (0.002) ­­­­­­­­­­­­­­­­­­­
­­­­­­­­­­­­­­­­­­­ 0.566 (0.002) ­­­­­­­­­­­­­­­­­­­

­­­­­­­­­­­­­­­­­­­ 0.612 (0.003) ­­­­­­­­­­­­­­­­­­­

Top panel reports parameter estimates, with standard errors in parentheses, from the extension of the model that

allows for cross-year substitution. Standard errors are calculated using the asymptotic variance of the estimates

(see equation (10)), with M estimated by the numeric derivative of the objective function. Bottom panels report

implied quantities based on these parameters. Note that spending depends on the arrival rate of drug events (λ), the

distribution of event size (θ), as well as on the decision to claim, which is affected by the features of the contract and

the parameter p.
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